Facets
pe

Previous

Facets provide a general-purpose mechanism for non-intrusively extending the type system of an application, by loosely coupling new type instances to
existing ones. This shifts the type selection process from compile to run time and implements a form of late binding. This is particularly useful for versioning
an application.

On this page:

Ice Objects as Collections of Facets
Server-Side Facet Operations
Client-Side Facet Operations

Facet Exception Semantics

Ice Objects as Collections of Facets

Up to this point, we have presented an Ice object as a single conceptual entity, that is, as an object with a single most-derived interface and a single identity
, with the object being implemented by a single servant. However, an Ice object is more correctly viewed as a collection of one or more sub-objects known

as facets, as shown below:
—_ T B
- - T,
-~ "Facet 2" (/ .
/ \ / ™

\4— lce Object

/
I,f /'C\ " {Default Focet) \l
! / -
4N 4 } | >
- " - , Facets
/ ||I Facet 1 \I] ac

Facets —

“This Facet” |

-
h . _> ~ /

“~. “That Facet" -~
S, -
— ——

An Ice object with five facets sharing a single object identity.

The diagram above shows a single Ice object with five facets. Each facet has a name, known as the facet name. Within a single Ice object, all facets must
have unique names. Facet names are arbitrary strings that are assigned by the server that implements an Ice object. A facet with an empty facet name is
legal and known as the default facet. Unless you arrange otherwise, an Ice object has a single default facet; by default, operations that involve Ice objects
and servants operate on the default facet.

Note that all the facets of an Ice object share the same single identity, but have different facet names. Recall the definition of | ce: : Cur r ent once more:

https://doc.zeroc.com/display/IceMatlab/Asynchronous+Dynamic+Invocation+and+Dispatch+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/Versioning
https://doc.zeroc.com/display/IceMatlab/Object+Identity
https://doc.zeroc.com/display/IceMatlab/The+Current+Object

Slice

nodul e Ice
{
I ocal dictionary<string, string> Context;

enum Oper ati onMbde { Normal, \Nonmutating, \ldenpotent }

local struct Current

{
oj ect Adapt er adapt er;
ldentity id;
string facet;
string operation;
Qper at i onMode node;
Cont ext ctXx;
int request | d;
Encodi ngVer si on encodi ng;
}

By definition, if two facets have the same i d field, they are part of the same Ice object. Also by definition, if two facets have the same i d field, their f acet
fields have different values.

Even though Ice objects usually consist of just the default facet, it is entirely legal for an Ice object to consist of facets that all have non-empty names (that
is, it is legal for an Ice object not to have a default facet).

Each facet has a single most-derived interface. There is no need for the interface types of the facets of an Ice object to be unique. It is legal for two facets
of an Ice object to implement the same most-derived interface.

Each facet is implemented by a servant. All the usual implementation techniques for servants are available to implement facets — for example, you can
implement a facet using a servant locator. Typically, each facet of an Ice object has a separate servant, although, if two facets of an Ice object have the
same type, they can also be implemented by a single servant (for example, using a default servant).

Back to Top

Server-Side Facet Operations

On the server side, the object adapter offers a number of operations to support facets:

Slice

nanespace | ce

{
di ctionary<string, Object> Facet Map;
local interface CbjectAdapter
{
bj ect* addFacet (Object servant, ldentity id, string facet);
oj ect* addFacet Wt hUUI D(Obj ect servant, string facet);
oj ect renoveFacet (ldentity id, string facet);
oj ect findFacet(ldentity id, string facet);
Facet Map findAl | Facets(ldentity id);
Facet Map renpveAl | Facets(ldentity id);
/1
}
}

These operations have the same semantics as the corresponding "normal” operations for servant activation and deactivation (add, addW t hUUI D, r enove
,and f i nd), but also accept a facet name. The corresponding "normal” operations are simply convenience operations that supply an empty facet name.
For example, renove(i d) is equivalenttorenoveFacet (id, ""),thatis, renove(i d) operates on the default facet.

findAl | Facet s returns a dictionary of <f acet - nane, ser vant > pairs that contains all the facets for the given identity.

https://doc.zeroc.com/display/IceMatlab/Default+Servants
https://doc.zeroc.com/display/IceMatlab/Object+Adapters
https://doc.zeroc.com/display/IceMatlab/Servant+Activation+and+Deactivation

renpveAl | Facet s removes all facets for a given identity from the active servant map, that is, it removes the corresponding Ice object entirely. The
operation returns a dictionary of <f acet - narme, ser vant > pairs that contains all the removed facets.

These operations are sufficient for the server to create Ice objects with any number of facets. For example, assume that we have the following Slice
definitions:

Slice

nmodul e Fil esystem

{
/1
interface File extends Node
{
i denpotent Lines read();
i denpotent void wite(Lines text) throws GenericError;
}
}
nodul e Fil esyst enExt ensi ons
{
/1
cl ass DateTi me extends Ti meCf Day
{
/1
}
struct Tinmes
{
Dat eTi ne creat edDat €;
Dat eTi me accessedbDat e;
Dat eTi ne nodi fi edDat e;
}
interface Stat
{
i denpotent Tines get Ti mes();
}
}

Here, we have a Fi | e interface that provides operations to read and write a file, and a St at interface that provides access to the file creation, access, and
modification time. (Note that the St at interface is defined in a different module and could also be defined in a different source file.) If the server wants to
create an Ice object that contains a Fi | e instance as the default facet and a St at instance that provides access to the time details of the file, it could do
so as follows:

C++11

/]l Create a File instance.
I
auto file = std::make_shared<Filel >();

/'l Create a Stat instance.

/1

auto dt = std::nake_shared<Fil esyst enExt ensi ons: : Dat eTi ne>();
Fi | esyst enExt ensi ons: : Ti mes tines;

tinmes.createdDate = dt;

tines. accessedDate = dt;

times. nodi fi edDate = dt;

auto stat = std::nmake_shared<Statl>(tines);

/! Register the File instance as the default facet.
11
auto filePrx = nyAdapter->addWthUU D(file);

/] Register the Stat instance as a facet with nane "Stat".
/1
nyAdapt er - >addFacet (stat, filePrx->ice_getldentity(), "Stat");

C++98

I/l Create a File instance.
/1
Filesystem:FilePtr file = new Filel;

/] Create a Stat instance.

/1

Fi | esyst enExct ensi ons: : DateTi mePtr dt = new Fil esyst enExt ensi ons: : Dat eTi ne;
Fi | esyst enExt ensi ons: : Ti nes ti nes;

tinmes.createdDate = dt;

tines. accessedDate = dt;

tines. nodi fiedDate = dt;

Fi |l esystenExtensions:: StatPtr stat = new Statl (times);

/1 Register the File instance as the default facet.
/1
lce::ojectPrx filePrx = nyAdapter->addWthUU D(file);

/] Register the Stat instance as a facet with nane "Stat".
11
nyAdapt er - >addFacet (stat, filePrx->ice_getldentity(), "Stat");

The first few lines simply create and initialize a Fi | el and St at | instance. (The details of this do not matter here.) All the action is in the last two
statements:

C++11

auto filePrx = nyAdapter->addWthUU D(file);
nyAdapt er - >addFacet (stat, filePrx->ice_getldentity(), "Stat");

C++98

lce::bjectPrx filePrx = nyAdapter->addWthUU D(file);
nyAdapt er - >addFacet (stat, filePrx->ice_getldentity(), "Stat");

This registers the Fi | el instance with the object adapter as usual. (In this case, we let the Ice run time generate a UUID as the object identity.) Because
we are calling addW t hUUI D (as opposed to addFacet W t hUUI D), the instance becomes the default facet.

The second line adds a facet to the instance with the facet name St at . Note that we call i ce_get | denti ty on the Fi | e proxy to pass an object identity
to addFacet . This guarantees that the two facets share the same object identity.

Note that, in general, it is a good idea to use i ce_get | dent i t y to obtain the identity of an existing facet when adding a new facet. That way, it is
guaranteed that the facets share the same identity. (If you accidentally pass a different identity to addFacet , you will not add a facet to an existing Ice
object, but instead register a new Ice object; using i ce_get | dent i t y makes this mistake impossible.)

Back to Top

Client-Side Facet Operations

On the client side, which facet a request is addressed to is implicit in the proxy that is used to send the request. For an application that does not use
facets, the facet name is always empty so, by default, requests are sent to the default facet.

The client can use a checkedCast to obtain a proxy for a particular facet. For example, assume that the client obtains a proxy to a Fi | e instance as
shown above. The client can cast between the Fi | e facet and the St at facet (and back) as follows:

C++11

/Il Get a File proxy.
11
std::shared_ptr<Filesystem:FilePrx> file = ...;

/] Get the Stat facet.
/1
auto stat = lce::checkedCast <Fil esystenExt ensions:: StatPrx>(file, "Stat");

/1l Go back fromthe Stat facet to the File facet.
11
auto file2 = |ce::checkedCast<Fi |l esystem:FilePrx>(stat, "");

assert(lce::proxyldentityAndFacet Equal (file, file2));

C++98

/Il Get a File proxy.
I
Filesystem:FilePrx file = ...;

Il Get the Stat facet.
/1
Fi | esystenExtensions:: StatPrx stat = Fil esystenExtensions:: StatPrx::checkedCast(file, "Stat");

/1l Go back fromthe Stat facet to the File facet.

11
Filesystem:FilePrx file2 = Filesystem:FilePrx::checkedCast(stat, "");
assert(file2 == file); // The two proxies are equal in C++98

This example illustrates that, given any facet of an Ice object, the client can navigate to any other facet by using a checkedCast with the facet name.

If an Ice object does not provide the specified facet, checkedCast returns null:

C++11
auto stat = |ce::checkedCast <Fil esystenExtensions:: StatPrx>(file, "Stat");
if(!stat)
{
/1 No Stat facet on this object, handle error...
}
el se
{
auto times = stat->getTinmes();
/] Use times struct...
}
C++98

Fi | esystenExtensions:: StatPrx stat = Fil esystenExtensions:: StatPrx::checkedCast(file, "Stat");

if(!stat)

{
/1 No Stat facet on this object, handle error...

}

el se

{
Fi | esystenExtensions:: Tines times = stat->getTines();
/] Use times struct. ..

}

Note that checkedCast also returns a null proxy if a facet exists, but the cast is to the wrong type. For example:

C++11

/Il Get a File proxy.
11
std::shared_ptr<Filesystem:FilePrx> file = ...;

/] Cast to the wong type.
/1
auto prx = lce::checkedCast <SoneTypePrx>(file, "Stat");

assert (!prx); // checkedCast returns a null proxy.

C++98

/] Get a File proxy.
11
Filesystem:FilePrx file = ...;

/] Cast to the wrong type.
11
SonmeTypePrx prx = SoneTypePrx::checkedCast (file, "Stat");

assert(!prx); // checkedCast returns a null proxy.

If you want to distinguish between non-existence of a facet and the facet being of the incorrect type, you can first obtain the facet as type Cbj ect and then
down-cast to the correct type:

C++11

/1 Get a File proxy.
/1
std::shared_ptr<Filesystem:FilePrx> file = ...;

/] Get the facet as type Object.

/1
auto obj = lce::checkedCast<CbjectPrx>(file, "Stat");
if(!obj)
{
/1 No facet with nanme "Stat" on this Ice object.
}
el se
{
auto stat = |ce::checkedCast<Fil esyst enExtensions:: StatPrx>(file);
if(!stat)
/! There is a facet with nane "Stat", but it is not
/1 of type Fil esystenExtensions:: Stat.
}
el se
{
/] Use stat...
}
}

C++98

/Il Get a File proxy.
11
Filesystem:FilePrx file = ...;

/] Get the facet as type Object.

/1
Ice::bjectPrx obj = Ice::ObjectPrx::checkedCast(file, "Stat");
if(!obj)
{
/1 No facet with nane "Stat" on this Ice object.
}
el se
{
Fi | esystenExtensions:: StatPrx stat = Fil esystenExtensions:: StatPrx::checkedCast(file);
if(!stat)
/! There is a facet with nane "Stat", but it is not
/1 of type Fil esystenExtensions:: Stat.
}
el se
{
// Use stat...
}
}

This last example also illustrates that

C++11
I ce:: checkedCast <Stat Prx>(prx, "")

C++98
Stat Prx: : checkedCast (prx, "")

is not the same as

C++11
I ce:: checkedCast <St at Pr x>(pr x)

C++98
St at Prx: : checkedCast (prx)

The first version explicitly requests a cast to the default facet. This means that the Ice run time first looks for a facet with the empty name and then
attempts to down-cast that facet (if it exists) to the type St at .

The second version requests a down-cast that preserves whatever facet is currently effective in the proxy. For example, if the pr x proxy currently holds
the facet name "Joe", then (if pr x points at an object of type St at) the run time returns a proxy of type St at Pr x that also stores the facet name "Joe".

It follows that, to navigate between facets, you must always use the two-argument version of checkedCast , whereas, to down-cast to another type while
preserving the facet name, you must always use the single-argument version of checkedCast .

You can always check what the current facet of a proxy is by calling i ce_get Facet :

C++11
std::shared_ptr<ice::ObjectPrx> obj = ...;

cout << obj->ice_getFacet() << endl; // Print facet nane

C++98
lce::wjectPrx obj = ...;

cout << obj->ice_getFacet() << endl; // Print facet nane

This prints the facet name. (For the default facet, i ce_get Facet returns the empty string.)

Back to Top »

Facet Exception Semantics

The common exceptions Cbj ect Not Exi st Except i on and Facet Not Exi st Except i on have the following semantics:

® (bj ect Not Exi st Excepti on
This exception is raised only if no facets exist at all for a given object identity.

® Facet Not Exi st Excepti on
This exception is raised only if at least one facet exists for a given object identity, but not the specific facet that is the target of an operation
invocation.

If you are using servant locators or default servants, you must take care to preserve these semantics. In particular, if you return null from a servant
locator's | ocat e operation, this appears to the client as an Obj ect Not Exi st Except i on. If the object identity for a request is known (that is, there is at
least one facet with that identity), but no facet with the specified name exists, you must explicitly throw a Facet Not Exi st Excepti on from | ocat e
instead of simply returning null.

Back to Top »

See Also

Object Identity
Run-Time Exceptions
Object Adapters
Servant Locators
Default Servants

The Current Object

-

Previous

https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions#RunTimeExceptions-CommonExceptions
https://doc.zeroc.com/display/IceMatlab/Servant+Locators
https://doc.zeroc.com/display/IceMatlab/Default+Servants
https://doc.zeroc.com/display/IceMatlab/Object+Identity
https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions
https://doc.zeroc.com/display/IceMatlab/Object+Adapters
https://doc.zeroc.com/display/IceMatlab/Servant+Locators
https://doc.zeroc.com/display/IceMatlab/Default+Servants
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/Asynchronous+Dynamic+Invocation+and+Dispatch+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/Versioning

	Facets

