The Metrics Facet
-

Previous

The Met ri cs facet implements the Instrumentation Facility to provide convenient access to metrics for the Ice run time and select Ice services. The
metrics provided by this facet include the number of threads currently running and their state, the number of connections, information on invocations and
dispatch, as well as connection establishment and endpoint nhame resolution.

On this page:

Metrics Terminology

Metrics Types

The MetricsAdmin Interface
Obtaining the Local Metrics Facet
Metrics Attributes

Metrics Terminology

metric: an "analytical measurement intended to quantify the state of a system"”, recorded by the Ice run time, such as bytes sent over a connection.
metric name: the name of the metric, such as "number of connections".

metrics map: a collection of metrics objects.

metrics view: a collection of metrics maps. A view contains metrics maps of different types (e.g., connections and threads). Several metrics views
can be configured with different purposes. For example, you can have a "debug" metrics view to get detailed metrics of each of the instrumented
objects in the Ice communicator. This view can be enabled from time to time for debugging purposes but it's disabled most of the time. You could
also have a more coarse-grained metrics view to collect data at a higher level, such as the amount of bytes received and sent by all the
connections from the communicator. This metrics view can be enabled all the time.

Back to Top »

Metrics Types

Metrics are specified as Slice classes defined in the | ce/ Metri cs. i ce Slice file. All the metrics types are defined in the | ceMX module.

The base classis | ceMX: : Metri cs:

Slice

class Metrics

{
string id;
long total = 0;
int current = 0;
long total Lifetinme = 0;
int failures = 0;
}

A metrics object is an instance of | ceMX: : Met ri cs and represents metrics of one or more instrumented objects. An instrumented object can be anything
that supports instrumentation. The Ice run time supports instrumentation of the following objects and activities:

Threads

Connections

Invocations

Dispatch

Connection establishment
Endpoint resolution

The i d of a metric identifies the instrumented object(s). The t ot al and cur r ent members specify the total and current number of instrumented objects
created since the creation of the Ice communicator, respectively. The t ot al Li f et i me member is the sum of the lifetime of each instrumented object and
fai |l ur es is the number of failures that have occurred for the metrics object(s).

Failures are specified using a separate | ceMX: : Met ri csFai | ur es structure:

https://doc.zeroc.com/display/IceMatlab/The+Logger+Facet
https://doc.zeroc.com/display/IceMatlab/Filtering+Administrative+Facets
https://doc.zeroc.com/display/IceMatlab/Instrumentation+Facility

Slice

struct MetricsFailures

{
string id;

StringlntDict failures;

The f ai | ur es dictionary provides the count of each type of failure for a metric identified by i d. Failures are dependent on the instrumented objects. For
example, failures for Ice connections are represented with the name of the exception that caused the connection to fail (e.g., | ce: :

Connecti onLost Exceptionorlce:: Ti meout Excepti on).

A metrics map is simply defined as a sequence of | ceMX: : Met ri cs objects, and a metrics view is defined as a dictionary of metrics map:

Slice

sequence<Metrics> MetricsMap;
di ctionary<string, MetricsMap> MetricsView,

The key for the metrics view dictionary is a string that identifies the metrics map. The Ice run time supports the following metrics maps:

Metrics map name Slice class
Connection | ceMX: : ConnectionMetrics
Thread lceMX:: ThreadMetri cs
Invocation I ceMX:: I nvocationMetrics
Dispatch I ceMX: : Di spatchMetrics
EndpointLookup lceMX:: Metrics
ConnectionEstablishment | ceMX: : Metri cs

Description
Connection metrics.
Thread metrics. The Ice run time instruments threads for the communicator's thread
pools
as well as threads used internally.
Client-side proxy invocation metrics.

Server-side dispatch metrics.

Endpoint lookup metrics. For tcp, ssl and udp endpoints, this corresponds to
the DNS lookups made to resolve the host names in endpoints.

Connection establishment metrics.

A metrics map can also contain sub-metrics maps. An example is the | nvocat i on metrics map, which provides a Renot e sub-metrics map to record
metrics associated with remote invocations. The Slice class for remote invocation metrics is | ceMX: : Metri cs.

The Met ri csAdm n Interface

Back to Top

The Slice interface | ceMX: : Met ri csAdmi n allows you to retrieve the metrics associated with the Ice communicator:

Slice

nmodul e | ceMX

{

exception UnknownMetricsView {}

interface MetricsAdmin

{

Ice::StringSeq get MetricsVi emNanes(out |ce:: StringSeq di sabl eVi ews);
voi d enabl eMetricsView string nane)
throws UnknownMetricsView,
voi d di sabl eMetricsViewstring nane)
t hrows UnknownMetricsVi ew,
MetricsView get MetricsView(string view, out |ong tinestanp)
t hrows UnknownMetricsVi ew,
Metri csFai |l uresSeq get MapMetri csFailures(string view, string nmap)
t hrows UnknownMetricsVi ew,
MetricsFailures getMetricsFailures(string view, string nap, string id)
throws UnknownMetricsVi ew,

The get Met ri csVi ewNane operation retrieves the names of the configured enabled and disabled views. The enableMetricsView and disableMetricsView
allow to enable and disable a specific view. Calling those methods is equivalent to setting the view Disabled property to 1 or 0.The get Metri csVi ew
operation returns the metrics for the given view. The get MapMet ri csFai | ur es and get Met ri csFai | ur es operations retrieve the metrics failures for a
given map or metrics id.

Back to Top

Obtaining the Local Metrics Facet

We already showed how to obtain a proxy for a remote administrative facet, but suppose you want to interact with the facet in your local address space.
The code below shows the necessary steps:

C++11

aut o obj

i f(obj)
{

= communi cat or - >f i ndAdmi nFacet ("Metrics");

/1 May be null if the facet is not enabl ed
auto facet = std::dynam c_pointer_cast<lce::MetricsAdm n>(obj);

C++98

Ice::QbjectPtr obj = communi cator->fi ndAdm nFacet ("Metrics");

if(obj)
{

/1 May be null if the facet is not enabl ed
lce::MetricsAdm nPtr facet = lce::MetricsAdnm nPtr::dynani cCast (obj);

As shown here, the facet is registered with the name Met ri cs and a regular language cast is used to downcast the base object type to the Met ri csAdni n

interface.

Back to Top

Metrics Attributes

Metrics views are configured with IceMX Metrics properties.

The G oupBy, Accept and Rej ect properties are specified using attributes that are specific to each metrics map. The table below describes the
attributes supported by the Ice run time's metrics maps.

https://doc.zeroc.com/pages/viewpage.action?pageId=18263670#IceMX.Metrics.*-prefix.Disabled
https://doc.zeroc.com/display/IceMatlab/Using+the+admin+Object
https://doc.zeroc.com/pages/viewpage.action?pageId=18263670

Name Maps Description

id All A unique identifier to select the instrumented object or operation.

parent All The parent of the instrumented object or operation.

none All The none attribute is a special attribute that evaluates to the empty string.
endpoint Connection, Dispatch, Remote, The stringified endpoint.

ConnectionEstablishment, EndpointLookup

endpointType = Connection, Dispatch, Remote, The endpoint numerical type as defined in | ce/ Endpoi nt . i ce.
ConnectionEstablishment, EndpointLookup

endpointlsDat = Connection, Dispatch, Remote, A boolean indicating if the endpoint is a datagram endpoint.
agram ConnectionEstablishment, EndpointLookup

endpointlsSec = Connection, Dispatch, Remote, A boolean indicating if the endpoint is secure.

ure ConnectionEstablishment, EndpointLookup

endpointTime = Connection, Dispatch, Remote, The endpoint timeout.

out ConnectionEstablishment, EndpointLookup

endpointCom = Connection, Dispatch, Remote, A boolean indicating if the endpoint requires compression.
press ConnectionEstablishment, EndpointLookup

endpointHost = Connection, Dispatch, Remote, The endpoint host.

ConnectionEstablishment, EndpointLookup

endpointPort Connection, Dispatch, Remote, The endpoint port.
ConnectionEstablishment, EndpointLookup

connection Dispatch The connection description.

incoming Connection, Dispatch, Remote A boolean where true indicates an incoming (server) connection and false an
outgoing (client) connection.

adapterName | Connection, Dispatch, Remote If the connection is a server connection, adapterName returns the name of
?deapter that created the connection, otherwise it is the empty string.

connectionld Connection, Dispatch, Remote The ID of the connection if one is set, otherwise it is the empty string.

localAddress Connection, Dispatch, Remote The connection's local address.

localPort Connection, Dispatch, Remote The connection's local port.

remoteAddress ' Connection, Dispatch, Remote The connection's remote address.

remotePort Connection, Dispatch, Remote The connection's remote port.

mcastAddress = Connection, Dispatch, Remote The connection's multicast address.

mcastPort Connection, Dispatch, Remote The connection's multicast port.

state Connection The state of the connection.

operation Dispatch, Invocation The dispatched or invoked operation name.

identity Dispatch, Invocation The identity of the Ice object used for the dispatch or invocation.

facet Dispatch, Invocation The facet of the Ice object used for the dispatch or invocation.

mode Dispatch, Invocation The dispatch or invocation mode.

context.key Dispatch, Invocation The value of the dispatch or invocation context with the given key.

proxy Invocation The proxy used for the invocation.

encoding Invocation The proxy encoding.

The i d, par ent and none attributes are supported by all maps.

The value of the par ent attribute depends on the map. For the Connection, Dispatch and Remote maps, the par ent will either be "Communicator” if the
connection is a client connection, or the object adapter name if it's a server connection. For the Invocation, EndpointLookup, and ConnectionEstablishment
maps, it will always be "Communicator”. The par ent attribute enables the filtering of metrics based on the object adapter. When used with the Gr oupBy
property it also allows you to obtain metrics at the object adapter level. For instance, the following configuration does not monitor any metrics for the | ce.
Admi n object adapter and it groups all the metrics based on the object adapter or communicator:

I ceMX. Metrics. MyVi ew. G oupBy=par ent
lceMX. Metrics. MVi ew. Rej ect . parent =l ce\. Adni n # Escape the dot in lce.Adnmin

This configuration enables the communicator to get metrics on a per object adapter or communicator basis.

You can also use the none attribute to get metrics for the communicator including the metrics from object adapters, e.g., | ceMX. Metri cs. MyVi ew.
G oupBy=none. This provides the lowest possible level of detail as all the statistics will be recorded by a single metrics object.

The i d attribute allows you to get a higher level of detail by recording metrics on a per instrumented object or operation basis. If you specify | ceMX.
Metrics. MyVi ew. G oupBy=i d, the Met ri cs facet will record metrics for each individual object or operation.

Back to Top »

See Also

® [nstrumentation Facility
® Creating the admin Object
® |ce.Admin.*

pe

Previous

https://doc.zeroc.com/display/IceMatlab/Instrumentation+Facility
https://doc.zeroc.com/display/IceMatlab/Creating+the+admin+Object
https://doc.zeroc.com/pages/viewpage.action?pageId=18263646
https://doc.zeroc.com/display/IceMatlab/The+Logger+Facet
https://doc.zeroc.com/display/IceMatlab/Filtering+Administrative+Facets

	The Metrics Facet

