
Developing IceBox Services

 

On this page:

The IceBox Service Interface
IceBox Service Example in C++

C++ Service Entry Point
IceBox Service Example in Java
IceBox Service Example in C#
IceBox Service Failures

The IceBox  InterfaceService
Writing an IceBox service requires implementing the IceBox  interface:Service

Slice

module IceBox
{
    local interface Service
    {
        void start(string name, Ice::Communicator communicator, Ice::StringSeq args);
        void stop();
    }
}

As you can see, a service needs to implement only two operations,  and . These operations are invoked by the server;  is called after start stop start
the service is loaded, and  is called when the IceBox server is shutting down.stop

The  operation is the service's opportunity to initialize itself; this typically includes creating an object adapter and servants. The  and  start name args
parameters supply information from the service's , and the  parameter is an  object created by the configuration communicator Ice::Communicator
server for use by the service. Depending on the service configuration, this communicator instance may be  in the same IceBox shared by other services
server, therefore care should be taken to ensure that items such as object adapters are given unique names.

The  operation must reclaim any resources used by the service. Generally, a service deactivates its object adapter, and may also need to invoke stop wai
 on the object adapter in order to ensure that all pending requests have been completed before the clean up process can proceed. The tForDeactivate

server is responsible for destroying the communicator instance that was passed to .start

Whether the service's implementation of  should explicitly destroy its object adapter depends on other factors. For example, the adapter should be stop
destroyed if the service uses a shared communicator, especially if the service could eventually be restarted. In other circumstances, the service can allow 
its adapter to be destroyed as part of the communicator's destruction.

These interfaces are declared as  for a reason: they represent a contract between the server and the service, and are not intended to be used by local
remote clients. Any interaction the service has with remote clients is done via servants created by the service.

Back to Top ^

IceBox Service Example in C++
The example we present here is taken from the  sample program provided in the Ice distribution.IceBox/hello

The class definition for our service is quite straightforward:

C++11

https://doc.zeroc.com/display/IceMatlab/IceBox
https://doc.zeroc.com/display/IceMatlab/Configuring+IceBox+Services
https://doc.zeroc.com/display/IceMatlab/Configuring+IceBox+Services
https://doc.zeroc.com/display/IceMatlab/Configuring+IceBox+Services#ConfiguringIceBoxServices-UsingaSharedCommunicator


#include <IceBox/IceBox.h>

class HelloServiceI : public IceBox::Service 
{
public:
 
    virtual void start(const std::string&, const std::shared_ptr<Ice::Communicator>&, const Ice::StringSeq&) 
override;
    virtual void stop() override;

private:
 
    std::shared_ptr<Ice::ObjectAdapter> _adapter;
};

C++98

#include <IceBox/IceBox.h>

class HelloServiceI : public IceBox::Service 
{
public:
 
    virtual void start(const std::string&, const Ice::CommunicatorPtr&, const Ice::StringSeq&);
    virtual void stop();

private:
 
    Ice::ObjectAdapterPtr _adapter;
};

The member definitions are equally straightforward:

C++11

#include <Ice/Ice.h>
#include <HelloServiceI.h>
#include <HelloI.h>

using namespace std;

void
HelloServiceI::start(const string& name, 
                     const shared_ptr<Ice::Communicator>& communicator,
                     const Ice::StringSeq& args)
{
    _adapter = communicator->createObjectAdapter(name);
    auto object = make_shared<HelloI>(communicator);
    _adapter->add(object, Ice::stringToIdentity("hello"));
    _adapter->activate();
}

void
HelloServiceI::stop()
{
    _adapter->deactivate();
}

C++98



#include <Ice/Ice.h>
#include <HelloServiceI.h>
#include <HelloI.h>

using namespace std;

void
HelloServiceI::start(const string& name, 
                     const Ice::CommunicatorPtr& communicator,
                     const Ice::StringSeq& args)
{
    _adapter = communicator->createObjectAdapter(name);
    Ice::ObjectPtr object = new HelloI(communicator);
    _adapter->add(object, Ice::stringToIdentity("hello"));
    _adapter->activate();
}

void
HelloServiceI::stop()
{
    _adapter->deactivate();
}

The  method creates an object adapter with the same name as the service, activates a single servant of type  (not shown), and activates the start HelloI
object adapter. The  method simply deactivates the object adapter.stop

Back to Top ^

C++ Service Entry Point

The last piece of the puzzle is the  function, which the IceBox server calls to obtain an instance of the service:entry point

C++11

extern "C"
{
    ICE_DECLSPEC_EXPORT IceBox::Service*
    create(const shared_ptr<Ice::Communicator>&)
    {
        return new HelloServiceI;
    }
}

C++98

extern "C"
{
    ICE_DECLSPEC_EXPORT IceBox::Service*
    create(Ice::CommunicatorPtr)
    {
        return new HelloServiceI;
    }
}

In this example, the  function returns a new instance of the  service. The name of the function is not important, but it must have the create Hello
signature shown above. In particular, the function must have C linkage, accept a single parameter (a const std::shared_ptr<Ice::

 in C++ and a  in C++98)  and return a native pointer to .Communicator>& Ice::CommunicatorPtr IceBox::Service

Configuring IceBox Services provides more information on entry points and describes how to configure your service into an IceBox server.

Back to Top ^

IceBox Service Example in Java
As with the C++ example presented in the previous section, the complete source for the Java example can be found in the  directory of the IceBox/hello
Ice distribution. The class definition for our service looks as follows:

https://doc.zeroc.com/display/IceMatlab/Configuring+IceBox+Services


Java

public class HelloServiceI implements com.zeroc.IceBox.Service
{
    public void start(String name, com.zeroc.Ice.Communicator communicator, String[] args)
    {
        _adapter = communicator.createObjectAdapter(name);
        com.zeroc.Ice.Object object = new HelloI(communicator);
        _adapter.add(object, com.zeroc.Ice.Util.stringToIdentity("hello"));
        _adapter.activate();
    }

    public void stop()
    {
        _adapter.deactivate();
    }

    private com.zeroc.Ice.ObjectAdapter _adapter;
}

The  method creates an object adapter with the same name as the service, activates a single servant of type  (not shown), and activates the start HelloI
object adapter. The  method simply deactivates the object adapter.stop

The server requires a service implementation to provide a public constructor (a default constructor or a constructor that accepts an Ice communicator 
parameter). This is the  for a Java IceBox service; that is, the server dynamically loads the service implementation class and invokes this public entry point
constructor to obtain an instance of the service.

This example is a trivial service, and yours will likely be much more interesting, but this does demonstrate how easy it is to write an IceBox service. After 
compiling the service implementation class, it can be configured into an IceBox server as described in .Configuring IceBox Services

Back to Top ^

IceBox Service Example in C#
The complete source for the C# example can be found in the  directory of the Ice distribution. The class definition for our service looks as IceBox/hello
follows:

C#

class HelloServiceI : IceBox.Service
{
    public void start(string name, Ice.Communicator communicator, string[] args)
    {
        _adapter = communicator.createObjectAdapter(name);
        _adapter.add(new HelloI(), Ice.Util.stringToIdentity("hello"));
        _adapter.activate();
    }

    public void stop()
    {
        _adapter.deactivate();
    }

    private Ice.ObjectAdapter _adapter;
}

The  method creates an object adapter with the same name as the service, activates a single servant of type  (not shown), and activates the start HelloI
object adapter. The  method simply deactivates the object adapter.stop

The server requires a service implementation to have a public constructor (a default constructor or a constructor that accepts an Ice communicator 
parameter). This is the entry point for a C# IceBox service; that is, the server dynamically loads the service implementation class from an assembly and 
invokes this public constructor to obtain an instance of the service.

This example is a trivial service, and yours will likely be much more interesting, but this does demonstrate how easy it is to write an IceBox service. After 
compiling the service implementation class, it can be configured into an IceBox server as described in .Configuring IceBox Services

Back to Top ^

https://doc.zeroc.com/display/IceMatlab/Configuring+IceBox+Services
https://doc.zeroc.com/display/IceMatlab/Configuring+IceBox+Services


IceBox Service Failures
An exception raised by a service's implementation of its entry point, , or  methods causes IceBox to log a message. An exception that occurs start stop
during server startup also results in .server termination

A service implementation can indicate a failure by raising :IceBox::FailureException

Slice

module IceBox
{
    local exception FailureException
    {
        string reason;
    }
}

Note that, as a local exception, C++ users must instantiate  with file and line number information:FailureException

C++

throw IceBox::FailureException(__FILE__, __LINE__, "my error message");

Back to Top ^

See Also

Configuring IceBox Services
Starting the IceBox Server

 

https://doc.zeroc.com/display/IceMatlab/Starting+the+IceBox+Server#StartingtheIceBoxServer-fail
https://doc.zeroc.com/display/IceMatlab/Configuring+IceBox+Services
https://doc.zeroc.com/display/IceMatlab/Starting+the+IceBox+Server
https://doc.zeroc.com/display/IceMatlab/IceBox
https://doc.zeroc.com/display/IceMatlab/Configuring+IceBox+Services

	Developing IceBox Services

