
IceDiscovery
IceDiscovery provides a location service using UDP multicast that enables Ice applications to discover objects and object adapters.

On this page:

IceDiscovery Overview
IceDiscovery Concepts
Discovery Process
IceDiscovery vs. IceGrid

Installing IceDiscovery
Configuring IceDiscovery

IceDiscovery Property Overview
Configuring IceDiscovery in Clients
Configuring IceDiscovery in Servers
Configuring a Locator Proxy

Using IceDiscovery
IceDiscovery Design Decisions
IceDiscovery Sample Programs

IceDiscovery Overview
IceDiscovery is an that must be installed in all of the clients and servers in your application. Once installed, IceDiscovery enables a client to Ice plug-in
dynamically locate objects using , which avoids the need for the client to statically configure the endpoints of the objects it uses. In a server, indirect proxies
IceDiscovery makes objects and object adapters available for discovery with minimal additional effort.

IceDiscovery Concepts

This section reviews some concepts that will help you as you learn more about IceDiscovery.

Indirect Proxies

Indirect proxies have two formats:

identityOnly
This format () uses only the object's identity.well-known proxy

identity@adapterId
This format combines the object identity and an adapter identifier. This identifier can either refer to a specific object adapter or a replica group.

Notice that neither format includes any endpoints, such as . The ability to resolve an indirect proxy using only symbolic tcp -h somehost -p 10000
information, much like a DNS lookup, helps to loosen the coupling between clients and servers.

The Ice core delegates the resolution of indirect proxies to a standardized . This architecture offers a significant advantage: Ice applications locator facility
can change locator settings via external configuration without requiring any changes to the application code.

Back to Top ^

Plug-in Facility

In addition to the locator facility, Ice also defines a standard plug-in facility through which applications can modify the functionality of the Ice core or add
new capabilities, again using only external configuration.

IceDiscovery combines these two facilities: it's installed as a standard Ice plug-in via configuration, and this plug-in installs a custom locator
implementation that enables discovery using UDP multicast.

We'll describe later how to install IceDiscovery in your clients and servers.

Back to Top ^

Replication

The locator facility includes support for replicated object adapters. For example, if and both participate in a replicate group identified Adapter1 Adapter2
as , then the indirect proxy could resolve to either or . Although TheGroup someObject@TheGroup someObject@Adapter1 someObject@Adapter2
there are two adapters that host at the implementation level, both object adapters incarnate the same logical object. The application is someObject
responsible for ensuring that any persistent state is properly synchronized between the servers that host replicated object adapters.

Back to Top ^

IceDiscovery Domains

https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/display/IceMatlab/Well-Known+Objects
https://doc.zeroc.com/display/IceMatlab/Terminology#Terminology-IndirectProxies
https://doc.zeroc.com/display/IceMatlab/Well-Known+Proxy
https://doc.zeroc.com/display/IceMatlab/Locators

Nothing prevents two unrelated IceDiscovery applications from using the same multicast address and port, which means a plug-in from Application A can
receive lookup requests from a client in Application B for objects and object adapters that might coincidentally match those of Application A. To avoid this
situation, the applications should configure unique . The client plug-in includes its domain identifier in each lookup request it sends so domain identifiers
that a server plug-in can ignore any requests that don't match its own domain identifier.

Back to Top ^

Discovery Process

When a client uses an indirect proxy with an adapter ID for the first time:

The Ice run time queries the Ice locator implemented by the IceDiscovery plug-in to resolve the indirect proxy's adapter ID.
The client's IceDiscovery plug-in transparently broadcasts a request via multicast.findAdapterById
The lookup request includes the adapter ID, and a proxy that the target server's IceDiscovery plug-in can use to communicate directly with the
client's IceDiscovery plug-in.
Every server that installs the plug-in and uses the same addressing information receives the client's multicast lookup request; only the server that
hosts the target adapter sends a reply.
The client plug-in waits for a reply using a ; if it doesn't receive a reply, it tries again a configurable timeout period configurable number of times
before giving up.
The target server's IceDiscovery plug-in sends a reply including a template proxy for the target adapter and whether or not it's replicated.
The client's plug-in receives the reply and:

if the adapter is not replicated, it returns the proxy to the Ice run time location facility.
if the adapter is replicated, it waits again for replies from other servers. The duration of the wait is based on the time it took to receive the
first reply (the latency) and a configurable .latency multiplier

The Ice run time location facility caches the endpoints for the object adapter and the client's application code uses these cached endpoints to
communicate directly with the target object using whichever transports its object adapter supports.

When the client uses a for the first time, an additional step occurs:well-known proxy

The Ice run time queries the Ice locator implemented by the IceDiscovery plug-in to resolve the well-known proxy.
The client's IceDiscovery plug-in transparently broadcasts a request via multicast.findObjectById
The lookup request includes the identity of the target object, and a proxy that the target server's IceDiscovery plug-in can use to communicate
directly with the client's IceDiscovery plug-in.
Every server that installs the plug-in and uses the same addressing information receives the client's multicast lookup request; only the server that
hosts this object sends a reply.

To check if a server hosts this object, the IceDiscovery plugin in the server searches the object adapters that have registered with the
IceDiscovery by attempting to ping the object in these object adapters with It firsts checks the object LocatorRegistry ice_ping.
adapters registered with a replica group ID, and then the object adapters registered without a replica group ID. This way, the object may
be incarnated by a servant in the Active Servant Map, or by a default servant, or by a servant returned by a servant locator.

The client plug-in waits for a reply using a ; if it doesn't receive a reply, it tries again a configurable timeout period configurable number of times
before giving up.
The target server's IceDiscovery plug-in sends a reply including an indirect proxy for the target object.
The Ice runtime location facility caches the indirect proxy for the well-known object.
The indirect proxy is resolved with IceDiscovery using the steps mentioned above for indirect proxies.

Unless the Ice locator cache is disabled, only the initial lookup request occurs over multicast. Further requests use the information from the Ice runtime
. The reply from the server plug-in to the client plug-in occurs using UDP unicast (by default). All subsequent communication between the locator cache

client and the target object proceed directly without intervention by the IceDiscovery plug-in.

Back to Top ^

IceDiscovery vs. IceGrid

IceDiscovery and both provide a location service but it helps to understand their differences when deciding which one to use in an application. Use IceGrid
IceDiscovery when your application needs a lightweight, transient location service. IceGrid's location service is backed by a persistent database and
represents just one of the features that IceGrid offers, along with remote administration, on-demand server activation, and many others. If you need a
location service but aren't yet ready to dive into IceGrid, start out using IceDiscovery; migrating to IceGrid later won't be difficult.

Back to Top ^

Installing IceDiscovery
The IceDiscovery plug-in must be installed in every client that needs to locate objects and in all of the servers that host those objects.

You can use the property to load and install the plug-in at runtime; the property value depends on the language mapping you're using: Ice.Plugin

C++

We provide a plug-in similar to IceDiscovery called that integrates with IceGrid.IceLocatorDiscovery

https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.Timeout
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.RetryCount
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.LatencyMultiplier
https://doc.zeroc.com/display/IceMatlab/Well-Known+Proxy
https://doc.zeroc.com/display/IceMatlab/Locator+Semantics+for+Servers
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.Timeout
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.RetryCount
https://doc.zeroc.com/display/IceMatlab/Locator+Semantics+for+Clients
https://doc.zeroc.com/display/IceMatlab/Locator+Semantics+for+Clients
https://doc.zeroc.com/display/IceMatlab/IceGrid
https://doc.zeroc.com/pages/viewpage.action?pageId=18263653
https://doc.zeroc.com/display/IceMatlab/IceLocatorDiscovery

Ice.Plugin.IceDiscovery=IceDiscovery:createIceDiscovery

Java

Ice.Plugin.IceDiscovery=IceDiscovery:com.zeroc.IceDiscovery.PluginFactory

Java Compat

Ice.Plugin.IceDiscovery=IceDiscovery:IceDiscovery.PluginFactory

C#

Ice.Plugin.IceDiscovery=IceDiscovery:IceDiscovery.PluginFactory

Python

Uses the C++ plug-in
Ice.Plugin.IceDiscovery=IceDiscovery:createIceDiscovery

Ruby

Uses the C++ plug-in
Ice.Plugin.IceDiscovery=IceDiscovery:createIceDiscovery

PHP

Uses the C++ plug-in
Ice.Plugin.IceDiscovery=IceDiscovery:createIceDiscovery

The C++ configuration is the same for the C++11 mapping and the C++98 mapping: Ice computes the name of the shared library to load and adds
automatically a "++11" suffix when needed.

If using C++, instead of dynamically loading the plug-in at run time your application can explicitly link with and register the plug-in. To register the plug-in,
you must call the function before the communicator initialization. The Ice::registerIceDiscovery(bool loadOnInitialize = true) loadOnIn

 parameter specifies if the plug-in is installed when the communicator is initialized. If set to , you will need to enable the plugin by setting itialize false
the property to .Ice.Plugin.IceDiscovery 1

Refer to the next section for information on configuring the plug-in.

Back to Top ^

Configuring IceDiscovery
Applications configure the IceDiscovery plug-in using configuration properties; the plug-in does not provide a local API.

IceDiscovery Property Overview

The IceDiscovery plug-in supports a number of , most of which affect the endpoints that the plug-in uses to communicate with its configuration properties
peers:

Lookup endpoint
This is the multicast endpoint on which all lookup queries are broadcast. It must use an IPv4 or IPv6 address in the multicast range with a fixed
port.

Reply endpoint
This is the endpoint on which a client receives replies from servers. In general, this endpoint should not use a fixed port.

The plug-in uses sensible default values for all of its configuration properties, such that it's often unnecessary to define any of the plug-in's properties.
However, it's still important to understand how the plug-in derives its endpoint information.

Ice::registerIceDiscovery is a simple helper function that calls .Ice::registerPluginFactory

https://doc.zeroc.com/pages/viewpage.action?pageId=18263666
https://doc.zeroc.com/display/IceMatlab/Plug-in+API

IceDiscovery creates several object adapters in each communicator in which it's installed, including the object adapters and IceDiscovery.Multicast
. These object adapters correspond to the Lookup and Reply endpoints mentioned above, respectively. You can configure the IceDiscovery.Reply

endpoints of these object adapters directly by defining the properties and IceDiscovery.Multicast.Endpoints IceDiscovery.Reply.Endpoints
. If you don't define an endpoint for an object adapter, the plug-in computes it as follows:

IceDiscovery.Multicast.Endpoints=udp -h -p [--interface]address port interface
IceDiscovery.Reply.Endpoints=udp [--interface]interface

where

address is the value of - defaults to if IPv4 is enabled or if IPv4 is disabled IceDiscovery.Address 239.255.0.1 ff15::1
port is the value of - defaults toIceDiscovery.Port 4061
interface is the value of IceDiscovery.Interface

Consequently, if you don't define any of these properties, the plug-in uses the following endpoints by default (assuming IPv4):

IceDiscovery.Multicast.Endpoints=udp -h 239.255.0.1 -p 4061
IceDiscovery.Reply.Endpoints=udp

Finally, you can also override the default endpoint that a client uses to broadcast its lookup queries by defining , otherwise the IceDiscovery.Lookup
plug-in computes this endpoint as follows:

IceDiscovery.Lookup=udp -h -p [--interface address port interface]

This endpoint must use the same address and port as .IceDiscovery.Multicast.Endpoints

As you can see, the properties , and are simply used as convenient IceDiscovery.Address IceDiscovery.Port IceDiscovery.Interface
shortcuts for customizing the details of the plug-in's endpoints. For example, suppose we want to use a different multicast address and port:

IceDiscovery.Address=239.255.0.99
IceDiscovery.Port=8000

The plug-in derives the following properties from these settings:

IceDiscovery.Multicast.Endpoints=udp -h 239.255.0.99 -p 8000
IceDiscovery.Lookup=udp -h 239.255.0.99 -p 8000

Back to Top ^

Configuring IceDiscovery in Clients

Aside from and optionally , no other configuration steps are required for an IceDiscovery client.installing the plug-in configuring its addressing information

Back to Top ^

Configuring IceDiscovery in Servers

In addition to and optionally , you also need to configure an identifier for each of a server's object installing the plug-in configuring its addressing information
adapters that hosts well-known (discoverable) objects. For example, suppose a server creates an object adapter named and we want its objects to Hello
be discoverable. We can configure the object adapter's property as follows: AdapterId

Hello.AdapterId=HelloAdapter

The identifier you select must be globally unique among the servers sharing the same address and domain settings.

To use object adapter replication, you'll need to include the property for each replicated object adapter:ReplicaGroupId

Hello.AdapterId=Hello1
Hello.ReplicaGroupId=HelloAdapter

The indirect proxy refers to an object in this particular object adapter, whereas the indirect proxy someObject@Hello1 someObject@HelloAdapter
could refer to any object having the identity in any of the object adapters participating in the replica group .someObject HelloAdapter

All of the clients and servers comprising an application must use the same values for and . IceDiscovery.Address IceDiscovery.Port
You should also consider defining to avoid any potential collisions from unrelated applications that happen to use IceDiscovery.DomainId
the same address and port.

https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.Multicast.AdapterProperty
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.Reply.AdapterProperty
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.Address
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.Port
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.Interface
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.Lookup
https://doc.zeroc.com/display/IceMatlab/Object+Adapter+Properties#ObjectAdapterProperties-adapter.AdapterId
https://doc.zeroc.com/display/IceMatlab/Object+Adapter+Properties#ObjectAdapterProperties-adapter.ReplicaGroupId
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.DomainId﻿

Back to Top ^

Configuring a Locator Proxy

The IceDiscovery plug-in calls on its communicator at startup, therefore it's not necessary for you to configure a locator proxy.setDefaultLocator

Back to Top ^

Using IceDiscovery
As its name implies, the IceDiscovery plug-in enables clients to locate objects at run time, as long as the servers hosting those objects are actively running
and using the same configuration settings for address, port, domain, and so on. Since IceDiscovery relies on UDP multicast to broadcast the lookup
requests, you'll need to ensure that your network supports this transport.

IceDiscovery Design Decisions

From a design perspective, incorporating IceDiscovery into your application requires answering the following questions:

What is the set of well-known objects that will be available for discovery?
Applications typically don't need to make object available for discovery. Rather, designs often only make "bootstrap" or "factory" objects every
available for discovery, while proxies for other objects can be obtained by invoking operations on these initial objects.

How should clients refer to these well-known objects?
As we explained , proxies for well-known objects can take two forms: an identity by itself, or an identity with an adapter identifier, such as earlier fa

 and , respectively. Clearly, using only identities places a greater burden on the application to ensure that ctory factory@AccountAdapter
they are globally unique among all of the clients and servers sharing the same address and domain settings. Including an object adapter identifier
can help to further partition the object namespace, so that and represent distinct factory@AccountAdapter factory@AdminAdapter
objects without requiring artificially unique identities such as and .accountFactory adminFactory

Can unrelated applications share the same multicast address and port?
If so, select unique domain identifiers for the applications and configure properties to avoid the potential for subtle IceDiscovery.DomainId
bugs.

Do you need replicated objects?
Replicated object adapters can improve the fault tolerance of your application by allowing independent server processes to implement the same
logical objects. Configure your servers as described above, and ensure your clients resolve indirect proxies using the replica group identifiers.

IceDiscovery provides enough flexibility to support a wide variety of application architectures. If you need additional functionality, consider using IceGrid
instead. Note also that IceGrid supports its own version of IceDiscovery, so that migrating an existing IceDiscovery application should be straightforward.

Back to Top ^

IceDiscovery Sample Programs

The Ice distribution includes two IceDiscovery sample programs:

hello - A basic client/server application
replication - An application that demonstrates the use of object adapter replication

Refer to the files in the demo source directories for more information on these examples.README

Back to Top ^

See Also

IceDiscovery.*
Plug-in Facility
Locators
Well-Known Objects
IceGrid

https://doc.zeroc.com/pages/viewpage.action?pageId=18263666#IceDiscovery.*-IceDiscovery.DomainId
https://doc.zeroc.com/pages/viewpage.action?pageId=18263666
https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/display/IceMatlab/Locators
https://doc.zeroc.com/display/IceMatlab/Well-Known+Objects
https://doc.zeroc.com/display/IceMatlab/IceGrid

	IceDiscovery

