
1.
2.

1.

2.
3.

Configuring IceSSL for Java

After , an application typically needs to define a handful of additional to configure settings such as the location of certificate and installing IceSSL properties
key files. This page provides an introduction to configuring the plug-in for Java applications.

On this page:

Configuring Keystores for Java
DSA Example for Java
ADH Example for Java
Configuring Ciphersuites for Java
IceSSL Diagnostics for Java

Configuring Keystores for Java
IceSSL uses Java's native format for storing keys and certificates: the keystore.

A keystore is represented as a file containing key pairs and associated certificates, and is usually administered using the utility supplied with the keytool
Java run time. Keystores serve two roles in Java's SSL architecture:

A keystore containing a key pair identifies the peer and is usually closely guarded.
A keystore containing public certificates represents the identities of trusted peers and can be freely shared. These keystores are also referred to
as "truststores" when they are used to store only trusted certificate chains.

A single keystore file can fulfill both of these purposes.

Java supports a pluggable architecture for keystore implementations in which a system property selects a particular implementation as the default keystore
type. IceSSL uses the default keystore type unless otherwise specified.

A password is assigned to each key pair in a keystore, as well as to the keystore itself. IceSSL must be provided with the password for the key pair, but the
keystore password is optional. If a keystore password is specified, it is used only to verify the keystore's integrity. IceSSL requires that all of the key pairs
in a keystore have the same password.

Our first example shows the properties that are sufficient in many situations:

Ice.Plugin.IceSSL=IceSSL:com.zeroc.IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.Keystore=keys.jks
IceSSL.Truststore=ca.jks
IceSSL.Password=password

IceSSL resolves the filenames defined in its configuration properties as follows:

Attempt to open the file as a class loader resource. This is especially useful for deploying applications with special security restrictions, such as
applets.
Attempt to open the file in the local file system.
If is defined, prepend its value and try steps 1 and 2 again. The property is a convenient way to IceSSL.DefaultDir IceSSL.DefaultDir
specify the default location of your keystore and truststore files.

The property specifies the password of the key pair.IceSSL.Password

Back to Top ^

DSA Example for Java
Java supports both RSA and DSA keys. No additional properties are necessary to use DSA:

It is a security risk to define a password in a plain text file, such as an Ice configuration file, because anyone who can gain read access to your
configuration file can obtain your password. IceSSL also supports to supply a password.alternate ways

https://doc.zeroc.com/display/IceMatlab/Configuring+IceSSL+for+Secure+Transport
https://doc.zeroc.com/display/IceMatlab/Programming+IceSSL
https://doc.zeroc.com/display/IceMatlab/Using+IceSSL#UsingIceSSL-InstallingIceSSL
https://doc.zeroc.com/pages/viewpage.action?pageId=18263673
https://doc.zeroc.com/pages/viewpage.action?pageId=18263673#IceSSL.*-IceSSL.DefaultDir
https://doc.zeroc.com/pages/viewpage.action?pageId=18263673#IceSSL.*-IceSSL.Password
https://doc.zeroc.com/display/IceMatlab/Advanced+IceSSL+Topics#AdvancedIceSSLTopics-ManagingCertificatePasswords

Ice.Plugin.IceSSL=IceSSL:com.zeroc.IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.Keystore=dsakeys.jks
IceSSL.Truststore=ca.jks
IceSSL.Password=password

Back to Top ^

ADH Example for Java
The following example uses ADH (the Anonymous Diffie-Hellman cipher). ADH is not a good choice in most cases because, as its name implies, there is
no authentication of the communicating parties, and it is vulnerable to man-in-the-middle attacks. However, it still provides encryption of the session traffic
and requires very little administration and therefore may be useful in certain situations. The configuration properties shown below demonstrate how to use
ADH:

Ice.Plugin.IceSSL=IceSSL:com.zeroc.IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.Ciphers=NONE (DH_anon.*AES)
IceSSL.VerifyPeer=0

The property enables support for ADH, which is disabled by default. Furthermore, this setting enables only those ADH ciphersuites that IceSSL.Ciphers
support AES encryption and eliminates other, lower-strength ciphersuites that may not be supported by recent JVMs.

The property changes the plug-in's default behavior with respect to certificate verification. Without this setting, IceSSL rejects a IceSSL.VerifyPeer
connection if the peer does not supply a certificate (as is the case with ADH).

Back to Top ^

Configuring Ciphersuites for Java
A ciphersuite represents a particular combination of encryption, authentication and hashing algorithms. You can configure the ciphersuites that the
underlying SSL engines are allowed to negotiate during handshaking with a peer. By default, IceSSL uses the underlying engine's default ciphersuites, but
you can define a property to customize the ciphersuite list. Normally the default configuration is chosen to eliminate relatively insecure ciphersuites such as
ADH, which is why it needs to be explicitly enabled as we saw in the example above.

IceSSL for Java interprets the value of as a sequence of expressions that filter the selected ciphersuites using name and pattern IceSSL.Ciphers
matching. If the property is not defined, the Java security provider's default ciphersuites are used. The following table defines the valid expressions that
may appear in the property value.

Expression Description

NONE Disables all ciphersuites. If specified, it must appear first.

ALL Enables all supported ciphersuites. If specified, it must appear first. This expression should be used with caution, as it may enable low-
security ciphersuites.

NAME Enables the ciphersuite matching the given name.

!NAME Disables the ciphersuite matching the given name.

(EXP) Enables ciphersuites whose names contain the regular expression .EXP

!(EXP) Disables ciphersuites whose names contain the regular expression .EXP

To determine the set of enabled ciphersuites, the plug-in begins with a list of ciphersuite names containing the default set as determined by the security
provider. The expressions in the property value add and remove ciphersuites from this list and are evaluated in the order of appearance. For example,
consider the following property definition:

IceSSL.Ciphers=NONE (RSA.*AES) !(EXPORT)

The expressions in this property have the following effects:

NONE clears the list of enabled ciphersuites.
(RSA.*AES) is a regular expression that enables ciphersuites whose names contain the string "RSA" followed by "AES", meaning ciphersuites
using RSA authentication and AES encryption.
!(EXPORT) is a regular expression that disables any of the selected ciphersuites whose names contain the string "EXPORT", meaning
ciphersuites having export-quality strength.

https://doc.zeroc.com/pages/viewpage.action?pageId=18263673#IceSSL.*-IceSSL.Ciphers
https://doc.zeroc.com/pages/viewpage.action?pageId=18263673#IceSSL.*-IceSSL.VerifyPeer
https://doc.zeroc.com/pages/viewpage.action?pageId=18263673#IceSSL.*-IceSSL.Ciphers

As another example, this property adds anonymous Diffie-Hellman to the default set of ciphersuites and disables export ciphersuites:

IceSSL.Client.Ciphers=(DH_anon) !(EXPORT)

Finally, this example selects only one ciphersuite:

IceSSL.Client.Ciphers=NONE SSL_RSA_WITH_RC4_128_SHA

Back to Top ^

IceSSL Diagnostics for Java
You can use two configuration properties to obtain more information about the plug-in's activities. Setting enables the plug-IceSSL.Trace.Security=1
in's diagnostic output, which includes a variety of messages regarding events such as ciphersuite selection, peer verification and trust evaluation. The
other property, , determines how much information is logged about network events such as connections and packets. Note that the Ice.Trace.Network
output generated by also includes other transports such as TCP and UDP.Ice.Trace.Network

You can also use a system property that displays a great deal of information about SSL certificates and connections, including the ciphersuite that is
selected for use by each connection. For example, the following command sets the system property that activates the diagnostics:

$ java -Djavax.net.debug=ssl MyProgram

Back to Top ^

See Also

Public Key Infrastructure
Using IceSSL
Programming IceSSL
Advanced IceSSL Topics
IceSSL.*

We recommend setting when experimenting with ciphersuite configurations. Pay special attention to the log IceSSL.Trace.Security=1
output to verify the ciphersuites that IceSSL has enabled.

https://doc.zeroc.com/display/IceMatlab/IceSSL#IceSSL-PublicKeyInfrastructure
https://doc.zeroc.com/display/IceMatlab/Using+IceSSL
https://doc.zeroc.com/display/IceMatlab/Programming+IceSSL
https://doc.zeroc.com/display/IceMatlab/Advanced+IceSSL+Topics
https://doc.zeroc.com/pages/viewpage.action?pageId=18263673
https://doc.zeroc.com/display/IceMatlab/Configuring+IceSSL+for+Secure+Transport
https://doc.zeroc.com/display/IceMatlab/Programming+IceSSL

	Configuring IceSSL for Java

