
Advanced IceSSL Topics

This page discusses some additional capabilities of the IceSSL plug-in.

On this page:

Managing Certificate Passwords
Dynamic Properties
Password Callbacks in C++
Password Callbacks in Java
Password Callbacks in .NET

Manually Configuring IceSSL
Using Custom Plug-ins with IceSSL

Managing Certificate Passwords
IceSSL may need to obtain a password if it loads a file that contains secure data, such as an encrypted private key. An application can supply a plain-text
password in a , but doing so is a potential security risk. For example, if you define the property on the application's command-line, it configuration property
may be possible for other users on the same host to see the password simply by obtaining a list of active processes. If you define the property in a
configuration file, the password is only as secure as the file in which it is defined.

In highly secure environments where access to a host is tightly restricted, a password can safely be supplied as a plain-text configuration property, or the
need for the password can be eliminated altogether by using unsecured key files.

In situations where password security is a concern, the application generally needs to take additional action.

Dynamic Properties

A common technique is to prompt the user for a password and transfer the user's input to a configuration property that the application defines dynamically,
as shown below:

C++

string password = // ...
Ice::InitializationData initData;
initData.properties = Ice::createProperties(argc, argv);
initData.properties->setProperty("IceSSL.Password", password);
Ice::CommunicatorHolder ich(initData);

The password must be present in the property set before the communicator is initialized, since IceSSL needs the password during its initialization, and the
communicator initializes plug-ins automatically by default.

Back to Top ^

Password Callbacks in C++

If a password is required but the application has not configured one, IceSSL prompts the user at the terminal during the plug-in's initialization. This
behavior is not suitable for some types of applications, such as a program that runs automatically at system startup as a .Unix daemon or Windows service

A terminal prompt is equally undesirable for graphical applications, which would generally prefer to prompt the user in an application window. The dynamic
property technique described in the previous section is usually appropriate in this situation.

If your application must supply a password, and you do not want to use a configuration property or a terminal prompt, your remaining option is supply your
own password prompt implementation to the plug-in using the function:setPasswordPrompt

C++11

https://doc.zeroc.com/display/IceMatlab/Programming+IceSSL+in+Other+Languages
https://doc.zeroc.com/display/IceMatlab/Setting+up+a+Certificate+Authority
https://doc.zeroc.com/display/IceMatlab/Configuring+IceSSL
https://doc.zeroc.com/display/IceMatlab/Service+Helper+Class
https://doc.zeroc.com/pages/viewpage.action?pageId=18263243

namespace IceSSL
{
 class Plugin : public Ice::Plugin
 {
 public:
 ...
 virtual void setPasswordPrompt(std::function<std::string()>) = 0;
 ...
 };
}

C++98

namespace IceSSL
{
 class PasswordPrompt : public IceUtil::Shared
 {
 public:

 virtual std::string getPassword() = 0;
 };
 typedef IceUtil::Handle<PasswordPrompt> PasswordPromptPtr;

 class Plugin : public Ice::Plugin
 {
 public:
 ...
 virtual void setPasswordPrompt(const PasswordPromptPtr&) = 0;
 ...
 };
}

IceSSL calls the supplied function (or in C++98) when a password is required. If the returned password is incorrect, IceSSL tries again, up getPassword
to the limit defined by the property.IceSSL.PasswordRetryMax

Note that you must delay the initialization of the IceSSL plug-in until after the installation of your password prompt. To illustrate this point, consider the
following example:

C++11

shared_ptr<Ice::Communicator> communicator = // ...
auto pluginMgr = communicator->getPluginManager();
auto plugin = pluginMgr->getPlugin("IceSSL");
auto sslPlugin = dynamic_point_cast<IceSSL::Plugin>(plugin);
sslPlugin->setPasswordPrompt(newPrompt); // OOPS!

C++98

Ice::CommunicatorPtr communicator = // ...
Ice::PluginManagerPtr pluginMgr = communicator->getPluginManager();
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
IceSSL::PluginPtr sslPlugin = IceSSL::PluginPtr::dynamicCast(plugin);
sslPlugin->setPasswordPrompt(new Prompt); // OOPS!

This code is incorrect because the new password prompt is installed too late: the communicator is already initialized, which means IceSSL has already
attempted to load the file that required a password.

The correct approach is to define the configuration property:Ice.InitPlugins

Ice.InitPlugins=0

This setting causes the communicator to install, but not initialize, its configured plug-ins. The application becomes responsible for initializing the plug-ins,
as shown below:

https://doc.zeroc.com/pages/viewpage.action?pageId=18263673#IceSSL.*-IceSSL.PasswordRetryMax
https://doc.zeroc.com/pages/viewpage.action?pageId=18263653#Ice.Plugin.*-Ice.InitPlugins

C++11

shared_ptr<Ice::Communicator> communicator = // ...
auto pluginMgr = communicator->getPluginManager();
auto plugin = pluginMgr->getPlugin("IceSSL");
auto sslPlugin = dynamic_pointer_cast<IceSSL::Plugin>(plugin);
sslPlugin->setPasswordPrompt(newPrompt);
pluginMgr->initializePlugins();

C++98

Ice::CommunicatorPtr communicator = // ...
Ice::PluginManagerPtr pluginMgr = communicator->getPluginManager();
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
IceSSL::PluginPtr sslPlugin = IceSSL::PluginPtr::dynamicCast(plugin);
sslPlugin->setPasswordPrompt(new Prompt);
pluginMgr->initializePlugins();

We assume the communicator was initialized with . After installing the object, the application invokes Ice.InitPlugins=0 PasswordPrompt initiali
 on the plug-in manager to complete the plug-in initialization process.zePlugins

Back to Top ^

Password Callbacks in Java

If you do not want to use configuration properties to define passwords, you can install a object in the plug-in using a configuration PasswordCallback
property, or using the method. The interface has the following definition:setPasswordCallback PasswordCallback

Java

package com.zeroc.IceSSL;

public interface PasswordCallback
{
 char[] getPassword(String alias);
 char[] getTruststorePassword();
 char[] getKeystorePassword();
}

Java Compat

package IceSSL;

public interface PasswordCallback
{
 char[] getPassword(String alias);
 char[] getTruststorePassword();
 char[] getKeystorePassword();
}

The methods are described below:

getPassword
Supplies the password for the key with the given alias. The return value must not be null.

getTruststorePassword
Supplies the password for a truststore. The method may return null, in which case the integrity of the truststore is not verified.

getKeystorePassword to obtain the password for a keystore.
Supplies the password for a keystore. The method may return null, in which case the integrity of the keystore is not verified.

For each of these methods, IceSSL clears the contents of the returned array as soon as possible.

The simplest way to install the callback is by defining the configuration property . The property's value is the name of your IceSSL.PasswordCallback
callback implementation class. IceSSL instantiates the class using its default constructor.

To install the callback manually, you must delay the initialization of the IceSSL plug-in until after the object is installed. To illustrate PasswordCallback
this point, consider the following example:

https://doc.zeroc.com/display/IceMatlab/Programming+IceSSL+in+Java
https://doc.zeroc.com/pages/viewpage.action?pageId=18263673#IceSSL.*-IceSSL.PasswordCallback

Java

Communicator communicator = // ...
PluginManager pluginMgr = communicator.getPluginManager();
Plugin plugin = pluginMgr.getPlugin("IceSSL");
com.zeroc.IceSSL.Plugin sslPlugin = (com.zeroc.IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI()); // OOPS!

This code is incorrect because the object is installed too late: the communicator is already initialized, which means IceSSL has PasswordCallback
already attempted to retrieve the certificate that required a password.

The correct approach is to define the configuration property:Ice.InitPlugins

Ice.InitPlugins=0

This setting causes the communicator to install, but not initialize, its configured plug-ins. The application becomes responsible for initializing the plug-ins,
as shown below:

Java

Communicator communicator = // ...
PluginManager pluginMgr = communicator.getPluginManager();
Plugin plugin = pluginMgr.getPlugin("IceSSL");
com.zeroc.IceSSL.Plugin sslPlugin = (com.zeroc.IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI());
pluginMgr.initializePlugins();

We assume the communicator was initialized with . After installing the object, the application invokes Ice.InitPlugins=0 PasswordCallback initia
 on the plug-in manager to complete the plug-in initialization process.lizePlugins

Back to Top ^

Password Callbacks in .NET

If you do not want to use configuration properties to define passwords, you can install a object in the plug-in using a configuration PasswordCallback
property, or using the method. The interface has the following definition:setPasswordCallback PasswordCallback

C#

using System.Security;

public interface PasswordCallback
{
 SecureString getPassword(string file);
 SecureString getImportPassword(string file);
}

The methods are described below:

getPassword
Supplies the password for the given file. The method may return null if no password is required.

getImportPassword
Supplies the password for a file from which certificates are imported into the certificate store. The method may return null if no password is
required.

The simplest way to install the callback is by defining the configuration property . The property's value is the name of your IceSSL.PasswordCallback
callback implementation class. IceSSL instantiates the class using its default constructor.

To install the callback manually, you must delay the initialization of the IceSSL plug-in until after the object is installed. To illustrate PasswordCallback
this point, consider the following example:

https://doc.zeroc.com/pages/viewpage.action?pageId=18263653#Ice.Plugin.*-Ice.InitPlugins
https://doc.zeroc.com/display/IceMatlab/Programming+IceSSL+in+.NET
https://doc.zeroc.com/pages/viewpage.action?pageId=18263673#IceSSL.*-IceSSL.PasswordCallback

C#

Ice.Communicator communicator = // ...
Ice.PluginManager pluginMgr = communicator.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI()); // OOPS!

This code is incorrect because the object is installed too late: the communicator is already initialized, which means IceSSL has PasswordCallback
already attempted to retrieve the certificate that required a password.

The correct approach is to define the configuration property:Ice.InitPlugins

Ice.InitPlugins=0

This setting causes the communicator to install, but not initialize, its configured plug-ins. The application becomes responsible for initializing the plug-ins,
as shown below:

C#

Ice.Communicator communicator = // ...
Ice.PluginManager pluginMgr = communicator.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI());
pluginMgr.initializePlugins();

We assume the communicator was initialized with . After installing the object, the application invokes Ice.InitPlugins=0 PasswordCallback initia
 on the plug-in manager to complete the plug-in initialization process.lizePlugins

Back to Top ^

Manually Configuring IceSSL
The supports a method in each of the supported language mappings that provides an application with more control over the plug-in's interfacePlugin
configuration.

In C++ with OpenSSL and in Java, an application can call the method to supply a pre-configured "context" object used by the underlying setContext
SSL engines. In .NET, the method accepts a collection of certificates that the plug-in should use. In all cases, using one of these setCertificates
methods causes IceSSL to ignore (at a minimum) the configuration properties related to certificates and keys. The application is responsible for
accumulating its certificates and keys, and must also deal with any password requirements.

Describing the use of these plug-in methods in detail is outside the scope of this manual, however it is important to understand their prerequisites. In
particular, the application needs to have the communicator load the plug-in but not actually initialize it until after the application has had a chance to
interact directly with it. (The previous section showed examples of this technique.) The application must define the configuration Ice.InitPlugins
property:

Ice.InitPlugins=0

With this setting, the application becomes responsible for completing the plug-in initialization process by invoking on the initializePlugins PluginMa
. The C# example below demonstrates the proper steps:nager

C#

Ice.Communicator comm = // ...
Ice.PluginManager pluginMgr = comm.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
X509Certificate2Collection certs = // ...
sslPlugin.setCertificates(certs);
pluginMgr.initializePlugins();

https://doc.zeroc.com/pages/viewpage.action?pageId=18263649
https://doc.zeroc.com/display/IceMatlab/Programming+IceSSL
https://doc.zeroc.com/pages/viewpage.action?pageId=18263653#Ice.Plugin.*-Ice.InitPlugins

Back to Top ^

Using Custom Plug-ins with IceSSL
The Ice is not restricted to protocol implementations. Ice only requires that a plug-in implement the interface and support the plug-in facility Ice::Plugin
language-specific mechanism for dynamic loading.

The customization options of the IceSSL plug-in make it possible for you to install an application-specific implementation of a certificate verifier in an
existing program. For example, you could install a custom certificate verifier in a Glacier2 router without the need to modify Glacier2's source code or
rebuild the executable. You would have to write a C++ plug-in to accomplish this, since Glacier2 is written in C++. In short, your plug-in must interact with
the IceSSL plug-in and install a certificate verifier.

For this technique to work, it is important that the plug-ins be loaded in a particular order. Specifically, the IceSSL plug-in must be loaded first, followed by
the certificate verifier plug-in. By default, Ice loads plug-ins in an undefined order, but you can use the property to specify a Ice.PluginLoadOrder
particular order.

As an example, let's write a plug-in that installs our simple . Here is the definition of our plug-in class:C++ certificate verifier

C++11

class VerifierPlugin : public Ice::Plugin
{
public:
 VerifierPlugin(const std::shared_ptr<Ice::Communicator>& communicator)
 _communicator(communicator)
 {
 }

 virtual void initialize() override
 {
 auto pluginMgr = _communicator->getPluginManager();
 auto plugin = pluginMgr->getPlugin("IceSSL");
 auto sslPlugin = std::dynamic_pointer_cast<IceSSL::Plugin>(plugin);

 auto verifier = [](const shared_ptr<IceSSL::ConnectionInfo>& info)
 {

 };
 sslPlugin->setCertificateVerifier(verifier);
 }

 virtual void destroy() override
 {
 }

private:
 std::shared_ptr<Ice::Communicator> _communicator;
};

C++98

https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/pages/viewpage.action?pageId=18263243

class VerifierPlugin : public Ice::Plugin
{
public:
 VerifierPlugin(const Ice::CommunicatorPtr& communicator) :
 _communicator(communicator)
 {
 }

 virtual void initialize()
 {
 Ice::PluginManagerPtr pluginMgr = _communicator->getPluginManager();
 Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
 IceSSL::PluginPtr sslPlugin = IceSSL::PluginPtr::dynamicCast(plugin);
 sslPlugin->setCertificateVerifier(new Verifier);
 }

 virtual void destroy()
 {
 }

private:
 Ice::CommunicatorPtr _communicator;
};

The class implements the two operations in the interface, and . The code in installs the certificate verifier Plugin initialize destroy initialize
function or object, while nothing needs to be done in .destroy

The next step is to write the plug-in's factory function, which the communicator invokes to obtain an instance of the plug-in:

C++11

extern "C"
{
 Ice::Plugin*
 createVerifierPlugin(const shared_ptr<Ice::Communicator>& communicator,
 const string& name,
 const Ice::StringSeq& args)
 {
 return new VerifierPlugin(communicator);
 }
}

C++98

extern "C"
{
 Ice::Plugin*
 createVerifierPlugin(const Ice::CommunicatorPtr& communicator,
 const string& name,
 const Ice::StringSeq& args)
 {
 return new VerifierPlugin(communicator);
 }
}

We can give the function any name; in this example, we chose .createVerifierPlugin

Finally, to install the plug-in we need to define the following properties:

Ice.PluginLoadOrder=IceSSL,Verifier
Ice.Plugin.IceSSL=IceSSL:createIceSSL
Ice.Plugin.Verifier=Verifier:createVerifierPlugin

The value of guarantees that IceSSL is loaded first. The plug-in specification identifies Ice.PluginLoadOrder Verifier:createVerifierPlugin
the name of the shared library or DLL and the name of the registration function.

https://doc.zeroc.com/display/IceMatlab/Ice.PluginLoadOrder

There are a few more details you must attend to, such as ensuring that the factory function is exported properly and building the shared library or DLL that
contains the new plug-in. Our discussion of the provides more information on developing a plug-in.plug-in facility

Back to Top ^

See Also

Service Helper Class
Configuring IceSSL
Programming IceSSL in C++
Programming IceSSL in Java
Programming IceSSL in .NET
Plug-in Facility
IceSSL.*
Ice.Plugin.*
Ice.InitPlugins
Ice.PluginLoadOrder

https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/display/IceMatlab/Service+Helper+Class
https://doc.zeroc.com/display/IceMatlab/Configuring+IceSSL
https://doc.zeroc.com/pages/viewpage.action?pageId=18263243
https://doc.zeroc.com/display/IceMatlab/Programming+IceSSL+in+Java
https://doc.zeroc.com/display/IceMatlab/Programming+IceSSL+in+.NET
https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/pages/viewpage.action?pageId=18263673
https://doc.zeroc.com/pages/viewpage.action?pageId=18263653
https://doc.zeroc.com/pages/viewpage.action?pageId=18263649
https://doc.zeroc.com/display/IceMatlab/Ice.PluginLoadOrder
https://doc.zeroc.com/display/IceMatlab/Programming+IceSSL+in+Other+Languages
https://doc.zeroc.com/display/IceMatlab/Setting+up+a+Certificate+Authority

	Advanced IceSSL Topics

