
1.
2.
3.
4.
5.
6.
7.

Getting Started with Glacier2

On this page:

Using Glacier2
Configuring the Router
Writing a Password File

icehashpassword Helper Script
Starting the Router
Configuring a Glacier2 Client
Glacier2 Object Identities
Creating a Glacier2 Session
Glacier2 Session Expiration
Glacier2 Session Destruction

Using Glacier2
Using Glacier2 in a minimal configuration involves the following tasks:

Write a for the router.configuration file
Write a for the router. (Glacier2 also supports to authenticate users.)password file other ways
Decide whether to use the router's internal session manager, or supply your own .session manager
Start the router on a host with access to the public and private networks.
Modify the to use the router.client configuration
Modify the client to create a .router session
Ensure that the for as long as the client requires it.router session remains active

Back to Top ^

Configuring the Router
The following router configuration properties establish the necessary endpoint and define when a session expires due to inactivity:

Glacier2.Client.Endpoints=tcp -h 5.6.7.8 -p 4063
Glacier2.SessionTimeout=60

The endpoint defined by is used by the Ice run time in a client to interact directly with the router. It is also the endpoint Glacier2.Client.Endpoints
where requests from routed proxies are sent. This endpoint is defined on the public network interface because it must be accessible to clients.
Furthermore, the endpoint uses a fixed port because clients may be statically configured with a proxy for this endpoint. The port numbers 4063 (for TCP)
and 4064 (for SSL) are reserved for Glacier2 by the Internet Assigned Numbers Authority (IANA).

A client must in order to use a Glacier2 router. Our setting for the property causes the router to destroy create a session Glacier2.SessionTimeout
sessions that have been idle for at least 60 seconds. It is not mandatory to define a timeout, but it is recommended, otherwise session state might
accumulate in the router.

Note that this configuration enables the router to forward requests from clients to servers. Additional configuration is necessary to support from callbacks
servers to clients.

You must also decide which authentication scheme (or schemes) to use. A mechanism is available, as are .file-based more sophisticated strategies

If clients access a via the router, additional router configuration is typically necessary.location service

Back to Top ^

Writing a Password File

For the sake of example, the router's public address is 5.6.7.8 and its private address is 10.0.0.1.

This sample configuration uses TCP as the endpoint protocol, although in most cases, .SSL is preferable

https://doc.zeroc.com/display/IceMatlab/How+Glacier2+Works
https://doc.zeroc.com/display/IceMatlab/Callbacks+through+Glacier2
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router
https://doc.zeroc.com/display/IceMatlab/Glacier2+Session+Management
https://doc.zeroc.com/pages/viewpage.action?pageId=18263644#Glacier2.*-Glacier2.Client.AdapterProperty
https://doc.zeroc.com/pages/viewpage.action?pageId=18263644#Glacier2.*-Glacier2.SessionTimeout
https://doc.zeroc.com/display/IceMatlab/Callbacks+through+Glacier2
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router
https://doc.zeroc.com/display/IceMatlab/IceGrid+and+Glacier2+Integration
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router

The router's simplest authentication mechanism uses an access control list in a text file consisting of username and password pairs. Passwords are
encoded using the (). modular crypt format MCF

The general structure of a encoded password hash is: , where denotes the scheme used for hashing, and MCF $identifier$content identifier con
 denotes its contents. Glacier2 supports two types of encoded password hashes:tent MCF

On Windows and macOS:

PBKDF2 using , or as the digest algorithm.SHA-1, SHA-256 SHA-512

On Linux:

Crypt using , or as the digest algorithmSHA-256 SHA-512 .

The property specifies the name of the password file:Glacier2.CryptPasswords

Glacier2.CryptPasswords=passwords

The format of the password file is very simple. Each user name-password pair must reside on a separate line, with whitespace separating the user name
from the password. For example, the following password file contains an entry for the user name :test

test 5rounds=110000$5rM9XIDChkgEu.S3$ov7yip4NOi1wymAZmamEv1uKPQRB0WzasoJsWMpRT19

icehashpassword Helper Script

You can use the helper script to generate these username-password pairs. This script requires and to be installed. To icehashpassword Python pip
install this script run:

> pip install zeroc-icehashpassword

You can now use the command :icehashpassword

> icehashpassword
Password:
5rounds=110000$5rM9XIDChkgEu.S3$ov7yip4NOi1wymAZmamEv1uKPQRB0WzasoJsWMpRT19

You may also specify several optional parameters:

-d MESSAGE_DIGEST_ALGORITHM, --digest=MESSAGE_DIGEST_ALGORITHM
-s SALT_SIZE, --salt=SALT_SIZE
-r ROUNDS, --rounds=ROUNDS

For example,

> python icehashpassword.py -r 25000 -s 32 -d sha256
Password:
$pbkdf2-sha256$25000$pJSSEuKcs9aaE.J8711LyRlD6H0P4Tyn9J7znpNyLsU$Yx7NNLDfwwLeMbZV84X2rBYBnvrXvK/TDIQiIGabQIM

Note that generates PBKDF2 hashes on Windows and macOS, and Crypt hashes on Linux.icehashpassword

Back to Top ^

PBKDF2 does not have a standard form in the specification. In this case Glacier2 uses the same format as .MCF passlib

$pbkdf2-digest$rounds$salt$ for and .SHA-256 SHA-512
$pbkdf2$rounds$salt$ for .SHA-1

This authentication scheme is intended for use in simple applications with a few users. Most applications should install their own custom permiss
.ions verifier

https://pythonhosted.org/passlib/modular_crypt_format.html
https://doc.zeroc.com/pages/viewpage.action?pageId=18263644#Glacier2.*-Glacier2.CryptPasswords
https://pythonhosted.org/passlib/modular_crypt_format.html
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router#SecuringaGlacier2Router-Glacier2AccessControl
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router#SecuringaGlacier2Router-Glacier2AccessControl

Starting the Router
The router supports the following command-line options:

$ glacier2router -h
Usage: glacier2router [options]
Options:
-h, --help Show this message.
-v, --version Display the Ice version.
--nowarn Suppress warnings.

The option prevents the router from displaying warning messages at startup when it is unable to contact a permissions verifier object or a --nowarn
session manager object specified by its configuration.

Additional command line options are supported, including those that allow the router to run as a , and Ice includes a Windows service or Unix daemon utility
to help you install the router as a Windows service.

Assuming our configuration properties are stored in a file named , you can start the router with the following command:config

$ glacier2router --Ice.Config=config

Back to Top ^

Configuring a Glacier2 Client
The following properties configure a client to use a Glacier2 router:

Ice.Default.Router=Glacier2/router:tcp -h 5.6.7.8 -p 4063
Ice.RetryIntervals=-1

The property defines the router proxy. Its endpoints must match those in .Ice.Default.Router Glacier2.Client.Endpoints

Setting Ice.RetryIntervals to -1 disables automatic retries, which are not useful for proxies configured to use a Glacier2 router.

Back to Top ^

Glacier2 Object Identities
A Glacier2 router hosts one well-known object. The default identity of this object is , corresponding to the interfacGlacier2/router Glacier2::Router
e. If an application requires the use of multiple different (that is, not replicated) routers, it is a good idea to assign a unique identity to this object by
configuring the routers with different values of the property, as shown in the following example:Glacier2.InstanceName

Glacier2.InstanceName=PublicRouter

This property changes the category of the object identity, which becomes . The client's configuration must also be changed to PublicRouter/router
reflect the new identity:

Ice.Default.Router=PublicRouter/router:tcp -h 5.6.7.8 -p 4063

One exception to this rule is if you deploy multiple Glacier2 routers as replicas, for example, to gain redundancy or to distribute the message-forwarding
load over a number of machines. In that case, all the routers must use the same instance name, and the router clients can use proxies with multiple
endpoints, such as:

Ice.Default.Router=PublicRouter/router:tcp -h 5.6.7.8 -p 4063:tcp -h 6.10.7.8 -p 4063

Back to Top ^

A client can discover a router's proxy at run time using the . interfaceRouterFinder

https://doc.zeroc.com/display/IceMatlab/Service+Helper+Class
https://doc.zeroc.com/pages/viewpage.action?pageId=18263632
https://doc.zeroc.com/pages/viewpage.action?pageId=18263648#Ice.Default.*-Ice.Default.Router
https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.RetryIntervals
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries
https://doc.zeroc.com/pages/viewpage.action?pageId=18263644#Glacier2.*-Glacier2.InstanceName
https://doc.zeroc.com/display/IceMatlab/Advanced+Glacier2+Client+Configurations#AdvancedGlacier2ClientConfigurations-finder

Creating a Glacier2 Session
Session management is provided by the interface:Glacier2::Router

Slice

module Glacier2
{
 exception PermissionDeniedException
 {
 string reason;
 }

 interface Router extends Ice::Router
 {
 Session* createSession(string userId, string password)
 throws PermissionDeniedException,
 CannotCreateSessionException;

 Session* createSessionFromSecureConnection()
 throws PermissionDeniedException,
 CannotCreateSessionException;

 idempotent string getCategoryForClient();

 void refreshSession()
 throws SessionNotExistException;

 void destroySession()
 throws SessionNotExistException;

 idempotent long getSessionTimeout();

 idempotent int getACMTimeout();
 }
}

The interface defines two operations for creating sessions: and . The router requires each createSession createSessionFromSecureConnection
client to create a session using one of these operations; only after the session is created will the router forward requests on behalf of the client.

The operation expects a user name and password and, depending on the , returns either a proxy or nil. createSession router's configuration Session
When using the default authentication scheme, the given user name and password must match an entry in the router's password file in order to
successfully create a session.

The operation does not require a user name and password because it authenticates the client using the createSessionFromSecureConnection
credentials associated with the client's to the router.SSL connection

To create a session, the client typically obtains the router proxy from the communicator, downcasts the proxy to the interface, and Glacier2::Router
invokes one of the operations. The sample code below demonstrates how to do it in C++; the code will look very similar in the other language create
mappings.

C++11

https://doc.zeroc.com/display/IceMatlab/Glacier2+Session+Management
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router

auto defaultRouter = communicator->getDefaultRouter();
auto router = Ice::checkedCast<Glacier2::RouterPrx>(defaultRouter);
string username = ...;
string password = ...;
shared_ptr<Glacier2::SessionPrx> session;
try
{
 session = router->createSession(username, password);
}
catch(const Glacier2::PermissionDeniedException& ex)
{
 cout << "permission denied:\n" << ex.reason << endl;
}
catch(const Glacier2::CannotCreateSessionException& ex)
{
 cout << "cannot create session:\n" << ex.reason << endl;
}

C++98

Ice::RouterPrx defaultRouter = communicator->getDefaultRouter();
Glacier2::RouterPrx router = Glacier2::RouterPrx::checkedCast(defaultRouter);
string username = ...;
string password = ...;
Glacier2::SessionPrx session;
try
{
 session = router->createSession(username, password);
}
catch(const Glacier2::PermissionDeniedException& ex)
{
 cout << "permission denied:\n" << ex.reason << endl;
}
catch(const Glacier2::CannotCreateSessionException& ex)
{
 cout << "cannot create session:\n" << ex.reason << endl;
}

If the router is configured with a , the and operations may return a proxy session manager createSession createSessionFromSecureConnection
for an object implementing the interface (or an application-specific derived interface). The client receives a null proxy if no session Glacier2::Session
manager is configured.

A non-nil session proxy returned by a operation must be configured with the router that created it because the session object is only accessible create
via the router. If the router is configured as the client's default router at the time or is createSession createSessionFromSecureConnection
invoked, as is the case in the example above, then the session proxy is already properly configured and nothing else is required. Otherwise, the client must
explicitly configure the session proxy with a router using the proxy method.ice_router

If the client wishes to destroy the session explicitly, it must invoke on the router proxy. If a client does not destroy its session, the router destroySession
destroys it automatically when it . A client can obtain the inactivity timeout value by calling and keep the expires due to inactivity getSessionTimeout
session alive by periodically calling if necessary. An easier solution for keeping the session alive is to call and use refreshSession getACMTimeout
this value to configure the behavior of the client's connection to the router:Active Connection Management

C++11

int acmTimeout = router->getACMTimeout();
if(acmTimeout > 0)
{
 auto conn = router->ice_getCachedConnection();
 conn->setACM(acmTimeout, Ice::nullopt, Ice::ACMHeartbeat::HeartbeatAlways);
}

C++98

https://doc.zeroc.com/display/IceMatlab/Glacier2+Session+Management
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management

int acmTimeout = router->getACMTimeout();
if(acmTimeout > 0)
{
 Ice::ConnectionPtr conn = router->ice_getCachedConnection();
 conn->setACM(acmTimeout, IceUtil::None, Ice::HeartbeatAlways);
}

The client calls to retrieve the router's server-side ACM timeout and passes this value to an invocation of on its connection to getACMTimeout setACM
the router, thereby ensuring the client and router are using a consistent setting. The client also enables automatic heartbeats so that the connection
remains active and prevents the router's server-side ACM from closing the connection.

Alternatively, you could configure the client's ACM with the properties and . Note however that these properties Ice.ACM.Timeout Ice.ACM.Heartbeat
affect all connections created by a client. In general, we recommend configuring the connection directly as shown above.

Whether or not you use or heartbeats to keep the session alive, Glacier2 will invoke on the session object for each refreshSession ice_ping refresh
 call or received. This check ensures the session is still alive in the . If it fails, Glacier2 destroys the Session heartbeat ice_ping session manager

session and the client is notified by the closure of the connection associated to the session.

The operation is used to implement over bidirectional connections.getCategoryForClient callbacks

Back to Top ^

Glacier2 Session Expiration
A Glacier2 router may be configured to destroy sessions after a period of inactivity. This feature allows the router, as well as a custom , to session manager
reclaim resources acquired during the session, but it requires some coordination between the router and its clients.

Ideally you would select a that is long enough to accommodate the usage patterns of your clients. For example, a session timeout of thirty session timeout
seconds is a reasonable choice for a client that invokes an operation on a back-end server once every five seconds. However, that timeout could disrupt a
different client that has long periods of inactivity, such as when its invocations are prompted by human interaction.

If you cannot predict with certainty the usage patterns of your clients, we recommend configuring the clients so that they actively prevent their sessions
from expiring. The simplest solution is to enable the heartbeat feature of , wherein the Ice run time automatically sends a Active Connection Management
heartbeat message at regular intervals. The Glacier2 router interprets a heartbeat message as an indication that the client is still active and wishes its
session to remain alive. ACM settings can be configured for all connections created by a communicator, or individually for a particular connection. Use
care to ensure the client's ACM timeout and the router's session timeout are compatible.

Note that if a session times out, the next client invocation raises . To re-establish the session, the client must explicitly re-ConnectionLostException
create it. If the client uses , it must also re-create the callback adapter and re-register its callback servants.callbacks

Back to Top ^

Glacier2 Session Destruction
A router session is destroyed automatically when the , and when a client explicitly destroys its session. The router also destroys a session session expires
if certain connection errors occur while attempting to route a request. These errors are represented by the run-time exceptions , SocketException Timeo

, and . In other words, if any of these exceptions occur while Glacier2 attempts to establish a connection to the target utException ProtocolException
back-end server, or forward a request to the target back-end server, the router automatically destroys the session.

Back to Top ^

See Also

Callbacks through Glacier2
Securing a Glacier2 Router
Glacier2 Session Management
Glacier2.*
Windows Services
Active Connection Management
Automatic Retries

Example

An example of a Glacier2 client is provided in the directory .demo/Glacier2/callback

Ice includes that simplify the task of creating a session.helper classes

https://doc.zeroc.com/pages/viewpage.action?pageId=18263645#Ice.ACM.*-Ice.ACM.Timeout
https://doc.zeroc.com/pages/viewpage.action?pageId=18263645#Ice.ACM.*-Ice.ACM.Heartbeat
https://doc.zeroc.com/display/IceMatlab/Glacier2+Session+Management
https://doc.zeroc.com/display/IceMatlab/Callbacks+through+Glacier2
https://doc.zeroc.com/display/IceMatlab/Glacier2+Session+Management
https://doc.zeroc.com/display/IceMatlab/Glacier2+Session+Management#Glacier2SessionManagement-session
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Callbacks+through+Glacier2
https://doc.zeroc.com/display/IceMatlab/Callbacks+through+Glacier2
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router
https://doc.zeroc.com/display/IceMatlab/Glacier2+Session+Management
https://doc.zeroc.com/pages/viewpage.action?pageId=18263644
https://doc.zeroc.com/pages/viewpage.action?pageId=18263632
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries
https://doc.zeroc.com/display/IceMatlab/Glacier2+Application+Class

Glacier2 Application Class

https://doc.zeroc.com/display/IceMatlab/Glacier2+Application+Class
https://doc.zeroc.com/display/IceMatlab/How+Glacier2+Works
https://doc.zeroc.com/display/IceMatlab/Callbacks+through+Glacier2

	Getting Started with Glacier2

