
1.

2.
3.

Application Distribution with Ansible

On this page:

Using Ansible to Distribute Applications
IceGrid Configuration
Ansible Configuration
Running the Playbook

Using Ansible to Distribute Applications
Ansible is a simple and easy to use automation tool which allowinuses SSH for authentication and communication between the control machine and hosts,
g you to distribute applications to many hosts with very little setup. Tasks to be performed are designed as playbooks – Ansible’s configuration,
deployment, and orchestration language. Let's look at how we can use Ansible to securly distribute applications to IceGrid.

IceGrid Configuration
In this example we assume that you have already configured and deployed your servers using IceGrid. Consider the following configuration:

IceGrid Configuration

<icegrid>
 <application name="MyDemoApp">
 <node name="Node1">
 <server id="ServerA1" exe="/path/to/application/serverA" ...>
 </server>
 <server id="ServerB1" exe="/path/to/application/serverB" ...>
 </server>
 </node>
 <node name="Node2">
 <server id="ServerA2" exe="/path/to/application/serverA" ...>
 </server>
 </node>
 ...
 </application>
</icegrid>

This deployment contains three servers:

ServerA1: located at , running on/path/to/application/serverA Node1
ServerA2: located at running on /path/to/application/serverA, Node2
ServerB1: located at , running on /path/to/application/serverB Node1

We will also assume you're running one IceGrid registry master instance, and two slave instances.

Ansible Configuration

We distribute our server applications in three steps using an Ansible playbook:

Disable and stop both servers using the IceGrid registry. We want to ensure the servers are disabled so that IceGrid does not automatically
restart them.
Update the server executables on each node.
Re-enable and start the servers using the IceGrid registry.

To do this we will need a directory with the following layout and files on your local system (where you will run Ansible playbooks).

deploy-server.yml - Ansible playbook
inventories/production - Ansible inventory file
group_vars/production/secure.yml - Encrypted Ansible vault
group_vars/production/production.yml - Group variables for production
files/serverA - ServerA executable

https://doc.zeroc.com/display/IceMatlab/Application+Distribution
https://doc.zeroc.com/display/IceMatlab/Application+Distribution+with+IcePatch2
https://www.ansible.com/

files/serverB - ServerB executable
library/ - Folder for extra Ansible modules

Before configuring the playbook we first need to look at the other files necessary to make the playbook function.

group_vars/production/production.yml

ansible_user: username
servers:
 - ServerA1
 - ServerA2
 - ServerB1
registryHost: localhost
registryPort: 4061
registryUsername: foo

The file contains all non-secure variables necessary for deploying our application. For example: the username Ansible will use to production.yml
connect to hosts; the list of server names you need to control; as well as the IceGrid registry's host, port and username. Note that the IceGrid registry
password is not included. Secure information should never be stored as plaintext. To store sensitive variables Ansible has a secure storage mechanism
called a . Vaults are stored on disk encrypted and are only decrypted and loaded into memory while a playbook is running. To create a vault run the vault
following command:

ansible-vault create group_vars/production/secure.yml

After answering all of the prompted questions you can enter data into the newly created vault (your default editor will be automatically opened).

group_vars/production/secure.yml

regiistryPassword: supersecretpassphrase

Be sure to save the file when you are finished. You can edit it later by running:

ansible-vault edit group_vars/production/secure.yml

Next is the ansible inventory file. This is an INI formatted file which corresponds to groups of hosts on which Ansible will run tasks. Ansible inventory files
are used to map these groups to actual IP addresses or DNS entries. A typical deployment will contain at least two inventory files: one for production and
one for testing/staging. The following is an example of a inventory file:production

inventories/production

[registry-master]
10.0.0.10

[registry-replicas]
10.0.0.11
10.0.0.12

[server-a]
10.0.0.20
10.0.0.21

[server-b]
10.0.0.20

[registries:children]
registry-master
registry-replicas

[nodes:children]
server1
server2

[production:children]
registries
nodes

Our production inventory contains a master IceGrid registry () with two replicas (), as well as hosts that registry-master registry-replicas
correspond to the servers which run the application () and the application (). You can also establish host specific serverA server-a serverB server-b
settings (such as login username) in this inventory file.

We are now ready to write the playbook. The following playbook distributes a server executable to each IceGrid node using the logic described above.

icegrid_servers module

The module from ZeroC's repository is required by this playbook. It can be installed by copying icegrid_servers ice-ansible icegrid_serv
 into the folder.ers.yml library

https://github.com/zeroc-ice/ice-ansible

deploy-server.yml

#
Disable and stop servers, synchronize server executables, and then enable and start servers.

- hosts: registries
 tasks:
 - name: Stop and disable servers
 icegrid_servers:
 servers: "{{ servers }}"
 username: "{{ registryUsername }}"
 password: "{{ registryPassword }}"
 enabled: no
 state: stopped
 run_once: true

- hosts: server-a
 tasks:
 - name: Synchronize serverA application
 synchronize: src=serverA dest=/path/to/application/serverA

- hosts: server-b
 tasks:
 - name: Synchronize serverB application
 synchronize: src=serverB dest=/path/to/application/serverB

- hosts: registries
 tasks:
 - name: Enable and start servers
 icegrid_servers:
 servers: "{{ servers }}"
 username: "{{ registryUsername }}"
 password: "{{ registryPassword }}"
 enable: yes
 state: started
 run_once: true

The first and last tasks are performed on the first host in the () group of the inventory, while the second and registries see run_once documentation
third tasks are performed on the and groups, respectfully. server-1 server-2

Running the Playbook
To run the playbook on the inventory, execute the following command:distribute-server.yml production

ansible-playbook -i inventories/production deploy-server.yml --ask-vault-pass

If your master IceGrid registry is unavailable you can filter it out of play by running:

ansible-playbook -i inventories/production deploy-server.yml --ask-vault-pass --limit "!registry-master"

The registry tasks will now run on the next available registry.

https://docs.ansible.com/ansible/playbooks_delegation.html#run-once
https://doc.zeroc.com/display/IceMatlab/Application+Distribution
https://doc.zeroc.com/display/IceMatlab/Application+Distribution+with+IcePatch2

	Application Distribution with Ansible

