lceGrid Administrative Sessions
-

Previous

To access IceGrid's administrative facilities from a program, you must first establish an administrative session. Once done, a wide range of services are at
your disposal, including the manipulation of IceGrid registries, nodes, and servers; deployment of new components such as well-known objects; and
dynamic monitoring of IceGrid events.

Note that, for replicated registries, an administrative session can be established with either the master or a slave registry replica, but a session with a slave
replica is restricted to read-only operations.

On this page:

® Creating an Administrative Session
® Accessing Log Files Remotely
® Dynamic Monitoring in IceGrid

© Observer Interfaces

© Registering Observers

Creating an Administrative Session

The Regi st ry interface provides two operations for creating an administrative session:

Slice

nodul e IceGid

{
exception Perm ssionDeni edException
{
string reason;
}
interface Registry
{
Adm nSessi on* createAdni nSession(string userld, string password)
throws Pernissi onDeni edExcepti on;
Admi nSessi on* creat eAdni nSessi onFr onSecur eConnect i on()
t hrows Permi ssi onDeni edExcepti on;
i denpot ent int getSessionTi neout();
i denpotent int get ACMITi neout () ;
11
}
}

The cr eat eAdm nSessi on operation expects a username and password and returns a session proxy if the client is allowed to create a session. By
default, IceGrid does not allow the creation of administrative sessions. You must define the property | ceGri d. Regi stry.

Adm nPer mi ssi onsVeri fi er with the proxy of a permissions verifier object to enable session creation with cr eat eAdmi nSessi on. The verifier object
must implement the interface G aci er 2: : Per m ssi onsVerifier.

The cr eat eAdm nSessi onFr onSecur eConnect i on operation does not require a username and password because it uses the credentials supplied by
an SSL connection to authenticate the client. As with cr eat eAdm nSessi on, you must configure the proxy of a permissions verifier object before clients
can use cr eat eAdni nSessi onFr onSecur eConnect i on to create a session. In this case, the | ceGri d. Regi stry.

Admi nSSLPer m ssi onsVeri fi er property specifies the proxy of a verifier object that implements the interface G aci er 2: :

SSLPer m ssi onsVerifier.

As an example, the following code demonstrates how to obtain a proxy for the registry and invoke cr eat eAdm nSessi on:

C++11

https://doc.zeroc.com/display/IceMatlab/Application+Distribution
https://doc.zeroc.com/display/IceMatlab/Glacier2+Integration+with+IceGrid
https://doc.zeroc.com/display/IceMatlab/Registry+Replication
https://doc.zeroc.com/pages/viewpage.action?pageId=18263667#IceGrid.*-IceGrid.Registry.AdminPermissionsVerifier
https://doc.zeroc.com/pages/viewpage.action?pageId=18263667#IceGrid.*-IceGrid.Registry.AdminPermissionsVerifier
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router#SecuringaGlacier2Router-access
https://doc.zeroc.com/display/IceMatlab/IceSSL
https://doc.zeroc.com/pages/viewpage.action?pageId=18263667#IceGrid.*-IceGrid.Registry.AdminSSLPermissionsVerifier
https://doc.zeroc.com/pages/viewpage.action?pageId=18263667#IceGrid.*-IceGrid.Registry.AdminSSLPermissionsVerifier
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router#SecuringaGlacier2Router-access
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router#SecuringaGlacier2Router-access

aut o base = communi cat or->stringToProxy("lceGid/ Registry");
auto registry = Ice::checkedCast<lceG i d:: Regi stryPrx>(base);
string username = ...;
string password = ...;
shared_ptr<lceGid:: Adm nSessi onPrx> sessi on;
try
{

session = regi stry->creat eAdm nSessi on(user nane, password);
}

catch(const IceGid:: Perm ssionDeni edException& ex)

{
}

cout << "perm ssion denied:\n" << ex.reason << endl;

C++98

Ice::ObjectPrx base = conmmuni cator->stringToProxy("lceGid/Registry");
lceGid::RegistryPrx registry = lceGid::RegistryPrx::checkedCast (base);
string username = ...;

string password = ...;

I ceGrid:: Adnmi nSessi onPrx session;

try
{
session = registry->creat eAdm nSessi on(user nane, password);
}
catch(const |ceGid:: Perm ssi onDeni edExcepti on& ex)
{
cout << "perm ssion denied:\n" << ex.reason << endl;
}

The Adni nSessi on interface provides operations for accessing log files and establishing observers. Furthermore, two additional operations are worthy of
your attention:

Slice

nmodul e IceGid

{
interface Adm nSession extends d acier2:: Session
{
i denpot ent voi d keepAlive();
i denpot ent Adm n* get Admi n();
11
}
}

If your program uses an administrative session indefinitely, you must prevent the session from expiring. You have two options for keeping a session alive:

1. Call Regi stry: : get Sessi onTi neout and periodically invoke Adm nSessi on: : keepAl i ve every timeout (or less) seconds
2. Call Regi stry: : get ACMTi neout and configure ACM settings on the connection

We recommend using the second approach, which you can implement as follows:

C++11
int acnili neout = registry->get ACMIi neout ();
i f (acnli meout > 0)

{
auto conn = session->i ce_get CachedConnection();
conn- >set ACM acnfli neout, |ce::nullopt, |ce::ACMHeart beat: : Heart beat Al ways) ;

C++98

https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management

int acnili meout = registry->get ACMIi neout () ;
i f (acnili neout > 0)

{

I ce:: ConnectionPtr conn = session->i ce_get CachedConnection();
conn->set ACM acnfli neout, |ceUtil::None, Ice::Heartbeat Al ways);

Enabling heartbeats on the connection causes Ice to automatically send a heartbeat message at regular intervals determined by the given timeout value.

The server ignores these messages, but they serve the purpose of keeping the session alive.

The get Admi n operation returns a proxy for the | ceG i d: : Adm n interface, which provides complete access to the registry's settings. For this reason,

you must use extreme caution when enabling administrative sessions.

Accessing Log Files Remotely

IceGrid's Adm nSessi on interface provides operations for remotely accessing the log files of a registry, node, or server:

Slice

nodul e IceGid

{
interface Adm nSession extends G acier2:: Session
{
/1
Filelterator* openServerlLog(string id, string path,
throws Fil eNot Avai | abl eExcepti on, Server Not Exi st Excepti on,
NodeUnr eachabl eExcepti on, Depl oynent Excepti on;
Filelterator* openServerStdErr(string id, int count)
throws Fil eNot Avai | abl eExcepti on, Server Not Exi st Excepti on,
NodeUnr eachabl eExcepti on, Depl oynment Excepti on;
Filelterator* openServerStdQut(string id, int count)
throws Fil eNot Avai | abl eException, Server Not Exi st Excepti on,
NodeUnr eachabl eExcepti on, Depl oynment Excepti on;
Filelterator* openNodeStdErr(string name, int count)
throws FileNotAvail abl eExcepti on, NodeNot Exi st Excepti on,
NodeUnr eachabl eExcepti on;
Filelterator* openNodeStdQut(string name, int count)
throws Fil eNot Avai | abl eExcepti on, NodeNot Exi st Excepti on,
NodeUnr eachabl eExcepti on;
Filelterator* openRegistryStdErr(string name, int count)
throws Fil eNot Avai | abl eExcepti on,
Regi st ryNot Exi st Excepti on,
Regi st ryUnr eachabl eExcepti on;
Filelterator * openRegistryStdQut(string nanme, int count)
throws Fil eNot Avai | abl eExcepti on,
Regi st ryNot Exi st Excepti on,
Regi st ryUnr eachabl eExcepti on;
}
}

Back to Top

In order to access the text of a program's standard output or standard error log, you must configure it using the | ce. St dCut and | ce. St dEr r properties,
respectively. For registries and nodes, you must define these properties explicitly but, for servers, the node defines these properties automatically if the

property | ceGri d. Node. Qut put is defined, causing the server's output to be logged in individual files.

If I ceGri d. Node. Qut put is not defined, the following rules apply:

® |f the node is started from a console or shell, servers share the node's st dout and st derr.Ifl ce. St dQut and/or | ce. St dEr r properties are

defined for the node, the servers' output is redirected to the specified files as well.

® |f the node is started as a Unix daemon and - - nocl ose is not used, the servers' output is lost, except if | ce. St dOut and/or | ce. St dErr

properties are set for the node, in which case the servers' output is redirected to the specified files.
® |f the node is started as a Windows service, the servers' output is lost even if | ce. St dQut and/or | ce. St dErr are set.

Log messages from the node itself are sent to st der r unless you set | ce. UseSysl og (for Unix). If the node is started as a Windows service, its log

messages always are sent to the Windows event log.

https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.StdOut
https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.StdErr
https://doc.zeroc.com/pages/viewpage.action?pageId=18263667#IceGrid.*-IceGrid.Node.Output
https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.UseSyslog

In the case of openSer ver Log, the value of the pat h argument must resolve to the same file as one of the server's log descriptors. This security
measure prevents a client from opening an arbitrary file on the server's host.

All of the operations accept a count argument and return a proxy to a Fi | el t er at or object. The count argument determines where to start reading the
log file: if the value is negative, the iterator is positioned at the beginning of the file, otherwise the iterator is positioned to return the last count lines of text.

The Fi | el t er at or interface is quite simple:

Slice

nodul e IceGid

{
interface Filelterator
{
bool read(int size, out lce::StringSeq |ines)
throws Fil eNot Avai | abl eExcepti on;
voi d destroy();
}
}

A client may invoke the r ead operation as many times as necessary. The si ze argument specifies the maximum number of bytes that r ead can return;
the client must not use a size that would cause the reply to exceed the client's configured maximum message size.

If this is the client's first call to r ead, the | i nes argument holds whatever text was available from the iterator's initial position, and the iterator is
repositioned in preparation for the next call to r ead. The operation returns false to indicate that more text is available and true if all available text has been
read.

Line termination characters are removed from the contents of | i nes. When displaying the text, you must be aware that the first and last elements of the
sequence can be partial lines. For example, the last line of the sequence might be incomplete if the limit specified by si ze is reached. The next call to r ead
returns the remainder of that line as the first element in the sequence.

As an example, the C++ code below displays the contents of a log file and waits for new text to become available:

C++11

shared_ptr<iceGid::FilelteratorPrx>iter = ...;
whil e(true)
{
Ice::StringSeq |ines;
bool end = iter->read(10000, |ines);
if(!'lines.enpty())

{
/1 The first line might be a continuation from
/] the previous call to read.
cout << lines[O0];
for(const auto& p : lines)
{
cout << endl << p << flush;
}
}
i f(end)
{
sl eep(1);
}

C++98

https://doc.zeroc.com/display/IceMatlab/Log+Descriptor+Element
https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.MessageSizeMax

lce@id::FilelteratorPrx iter = ...;
whil e(true)
{
Ice::StringSeq |ines;
bool end = iter->read(10000, |ines);
if(!'lines.enpty())

{
/1 The first line mght be a continuation from
/1 the previous call to read.
cout << lines[0];
for(lce::StringSeq::const_iterator p = ++lines.begin(); p != lines.end(); ++p)
{
cout << endl << *p << flush;
}
}
i f(end)
{
sl eep(1);
}

Notice that the loop includes a delay in case r ead returns true, which prevents the client from entering a busy loop when no data is currently available.

The client should call dest r oy when the iterator object is no longer required. At the time the client's session terminates, IceGrid reclaims any iterators that
were not explicitly destroyed.

If the client waits for new data, it must take steps to prevent the administrative session from expiring.

With these operations, an administrative client can retrieve any text file on a system where an IceGrid node is running. While it's common for this text file to
contain the output of an Ice logger, it could contain other unrelated outputs. This text file is presented as a sequence of strings, with no particular structure
for these strings.

The Logger admin facet provides another, and often better, way to retrieve the log messages sent to the logger of a server, node or registry. With the Log
ger facet, you retrieve log messages—and only log messages—as typed structures, whether or not the logger's output is stored in a text file or stored at

all. With the Adm nSessi on file operations presented above, you can retrieve the log files of a server even when this server is not running; conversely,
with the Logger admin facet, the target server must be running since this Logger facet is hosted in that server. Finally, the programming style espoused
by the Adm nSessi on file operations is a pull model: the administrative client calls r ead from time to time on the Fi | el t er at or object provided by
IceGrid. With the Logger admin facet, the administrative client uses a push model: it registers a remote logger object with the target server, node and
registry, and this remote logger receives new log messages as soon as they are generated.

Back to Top

Dynamic Monitoring in lceGrid

IceGrid allows an application to monitor relevant state changes by registering callback objects. (The IceGrid GUI tool uses these callback interfaces for its
implementation.) The callback interfaces are useful to, for example, automatically generate an email notification when a node goes down or some other
state change of interest occurs.

Observer Interfaces

IceGrid offers a callback interface for each major component of the IceGrid architecture:

https://doc.zeroc.com/display/IceMatlab/Logger+Facility
https://doc.zeroc.com/display/IceMatlab/The+Logger+Facet
https://doc.zeroc.com/display/IceMatlab/IceGrid+GUI+Tool

Slice

nodul e IceGid
{
interface NodeCbserver
{
voi d nodel ni t (NodeDynani cl nfoSeq nodes);
voi d nodeUp(NodeDynani cl nfo node);
voi d nodeDown(string nane);
voi d updat eServer (string node, ServerDynan clnfo updatedl nfo);
voi d updat eAdapt er (string node, AdapterDynani cl nfo updatedl nfo);
}

interface ApplicationCbserver
{
void applicationlnit(int serial, ApplicationlnfoSeq applications);
voi d applicationAdded(int serial, Applicationlnfo desc);
voi d applicationRenoved(int serial, string name);
voi d applicationUpdated(int serial, ApplicationUpdatelnfo desc);
}

interface Adapter Qbserver

{
voi d adapt erlnit(AdapterlnfoSeq adpts);
voi d adapt er Added(AdapterInfo info);
voi d adapt er Updat ed(Adapterinfo info);
voi d adapt er Renoved(string id);

}

interface Object Qoserver

{
voi d objectlnit(ObjectlnfoSeq objects);
voi d obj ect Added(Qbj ectInfo info);
voi d obj ect Updat ed(Qbj ectInfo info);
voi d obj ect Renpved(lce::ldentity id);

}

interface RegistryQbserver

{
void registrylnit(RegistrylnfoSeq registries);
voi d regi stryUp(Regi strylnfo node);
voi d regi stryDown(string nane);

The next section describes how to install an observer.

Registering Observers

The Adni nSessi on interface provides two operations for registering your observers:

Back to Top

Slice

nmodul e IceGid

{
interface Adm nSession extends G acier2:: Session
{
i denpotent voi d keepAlive();
i denpot ent voi d set Cbservers(Regi stryCbserver* registryQs,
NodeQbser ver* nodeQbs,
Appl i cati onCbserver* appQbs,
Adapt er Gbserver* adpt Qbs,
oj ect Cbserver* obj Obs)
throws Observer Al readyRegi st er edExcepti on;
i denpotent voi d set CbserversByldentity(lce::ldentity registryQbs,
Ice::ldentity nodeQos,
Ice::ldentity appQbs,
Ice::ldentity adpt Qos,
Ice::ldentity obj Qbs)
throws Observer Al readyRegi st er edExcepti on;
/1
}
}

You should invoke set Chser ver s and supply proxies when it is possible for the registry to establish a separate connection to the client to deliver its
callbacks. If network restrictions such as firewalls prevent such a connection, you should use the set Cbser ver sByl dent i t y operation, which creates a
bidirectional connection instead.

You can pass a null proxy for any parameter to set Cbser ver s, or an empty identity for any parameter to set Cbser ver sByl dent i ty, if you want to
use only some of the observers. In addition, passing a null proxy or an empty identity for an observer cancels a previous registration of that observer. The
operations raise Cbser ver Al r eadyRegi st er edExcept i on if you pass a proxy or identity that was registered in a previous call.

Once the observers are registered, operations corresponding to state changes will be invoked on the observers. (See the Slice API Reference for details
on the data passed to the observers. You can also look at the source code for the IceGrid GUI implementation in the Ice for Java distribution to see how
observers are used by the GUI.)

Finally, remember to take the steps necessary to prevent the administrative session from expiring.

Back to Top »

See Also

Registry Replication

Securing a Glacier2 Router

Resource Allocation using IceGrid Sessions
Log Descriptor Element

icegridadmin Command Line Tool
Bidirectional Connections

IceGrid.*

Logger admin Facet

4= »

Previous Next

https://doc.zeroc.com/display/IceMatlab/Bidirectional+Connections
#
https://doc.zeroc.com/display/IceMatlab/Registry+Replication
https://doc.zeroc.com/display/IceMatlab/Securing+a+Glacier2+Router
https://doc.zeroc.com/display/IceMatlab/Resource+Allocation+using+IceGrid+Sessions
https://doc.zeroc.com/display/IceMatlab/Log+Descriptor+Element
https://doc.zeroc.com/display/IceMatlab/icegridadmin+Command+Line+Tool
https://doc.zeroc.com/display/IceMatlab/Bidirectional+Connections
https://doc.zeroc.com/pages/viewpage.action?pageId=18263667
https://doc.zeroc.com/display/IceMatlab/The+Logger+Facet
https://doc.zeroc.com/display/IceMatlab/Application+Distribution
https://doc.zeroc.com/display/IceMatlab/Glacier2+Integration+with+IceGrid

	IceGrid Administrative Sessions

