
Data Encoding for Exceptions

Exception Encoding version 1.0
An exception is marshaled as shown below:

Marshaling format for exceptions.

Every exception instance is preceded by a single byte that indicates whether the exception uses class members: the byte value is if any of the exception 1
members are classes (or if any of the exception members, recursively, contain class members) and , otherwise.0

Following the header byte, the exception is marshaled as a sequence of pairs: the first member of each pair is the for an exception slice, and the type ID
second member of the pair is a containing the marshaled members of that slice. The sequence of pairs is marshaled in derived-to-base order, with slice
the most-derived slice first, and ending with the least-derived slice. Within each slice, data members are marshaled as for : in the order in which structures
they are defined in the Slice definition.

Following the sequence of pairs, any that are used by the members of the exception are marshaled. This final part is optional: it is present class instances
only if the header byte is .1

To illustrate the marshaling, consider the following exception hierarchy:

Slice

exception Base
{
 int baseInt;
 string baseString;
}

exception Derived extends Base
{
 bool derivedBool;
 string derivedString;
 double derivedDouble;
}

Assume that the exception members are initialized to the values shown below:

Member Type Value Marshaled size (in bytes)

baseInt int 99 4

baseString string "Hello" 6

derivedBool bool true 1

derivedString string "World!" 7

https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding
https://doc.zeroc.com/display/IceMatlab/Data+Encoding+for+Classes
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding#BasicDataEncoding-structure
https://doc.zeroc.com/display/IceMatlab/Data+Encoding+for+Classes

derivedDouble double 3.14 8

Member values of an exception of type .Derived

From the above table, we can see that the total size of the members of is 10 bytes, and the total size of the members of is 16 bytes. None Base Derived
of the exception members are classes. An instance of this exception has the on-the-wire representation shown in the next table. (The size, type, and byte
offset of the marshaled representation is indicated for each component.)

Marshaled value Size in bytes Type Byte offset

0 (no class members) 1 bool 0

"::Derived" (type ID) 10 string 1

20 (byte count for slice) 4 int 11

1)(derivedBool 1 bool 15

"World!")(derivedString 7 string 16

3.14)(derivedDouble 8 double 23

"::Base" (type ID) 7 string 31

14 (byte count for slice) 4 int 38

99)(baseInt 4 int 42

"Hello")(baseString 6 string 46

Marshaled representation of the exception.

Note that the size of each string is one larger than the actual string length. This is because each string is preceded by a count of its number of bytes, as
directed by the .encoding for strings

The receiver of this sequence of values uses the header byte to decide whether it eventually must unmarshal any class instances contained in the
exception (none in this example) and then examines the first type ID (). If the receiver recognizes that type ID, it can unmarshal the contents of ::Derived
the first slice, followed by the remaining slices; otherwise, the receiver reads the byte count that follows the unknown type (20) and then skips 20-4 bytes in
the input stream, which is the start of the type ID for the second slice (). If the receiver does not recognize that type ID either, it again reads the ::Base
byte count following the type ID (14), skips 14-4 bytes, and attempts to read another type ID. (This can happen only if client and server have been
compiled with mismatched Slice definitions that disagree in the exception specification of an operation.) In this case, the receiver will eventually encounter
an unmarshaling error, which it can report with a .MarshalException

If an exception contains class members, these members are marshaled following the exception slices as described in the .class encoding

Back to Top ^

Exception Encoding version 1.1
An exception is marshaled as a collection of whose order matches the inheritance hierarchy, with the most-derived type appearing first. The selected slices
encoding affects the content of each slice. The final slice, representing the least-derived type, has its bit set to true.format last slice

An exception in the compact format is marshaled as follows:

https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding#BasicDataEncoding-string
https://doc.zeroc.com/display/IceMatlab/Data+Encoding+for+Classes
https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/IceMatlab/Slicing+Values+and+Exceptions

Compact format for exceptions.

The leading byte of each slice is a set of bit flags that specifies the features of the slice. The compact format includes a type ID in the initial (most-derived)
slice but omits the type ID from all subsequent slices.

The sliced format includes a type ID in every slice, along with a slice size and an optional :indirection table

Sliced format for exceptions.

To illustrate the marshaling, consider the following exception hierarchy:

Slice

exception Base
{
 int baseInt;
 string baseString;
}

exception Derived extends Base
{
 bool derivedBool;
 string derivedString;
 double derivedDouble;
}

Assume that the exception members are initialized to the values shown below:

Member Type Value Marshaled size (in bytes)

baseInt int 99 4

baseString string "Hello" 6

derivedBool bool true 1

derivedString string "World!" 7

derivedDouble double 3.14 8

Member values of an exception of type .Derived

From the above table, we can see that the total size of the members of is 10 bytes, and the total size of the members of is 16 bytes. None Base Derived
of the exception members are classes. An instance of this exception using the sliced format has the on-the-wire representation shown in the next table.
(The size, type, and byte offset of the marshaled representation is indicated for each component.)

Marshaled value Size in bytes Type Byte offset

18 (flags: type ID is a string, slice size is present) 1 byte 0

"::Derived" (type ID) 10 string 1

20 (byte count for slice) 4 int 11

https://doc.zeroc.com/display/IceMatlab/Data+Encoding+for+Class+Graphs#DataEncodingforClassGraphs-indirection

1)(derivedBool 1 bool 15

"World!")(derivedString 7 string 16

3.14)(derivedDouble 8 double 23

50 (type ID is a string, slice size is present, last slice)flags: 1 byte 31

"::Base" (type ID) 7 string 32

14 (byte count for slice) 4 int 39

99)(baseInt 4 int 43

"Hello")(baseString 6 string 47

Marshaled representation of the exception using the sliced format.

Note that the size of each string is one larger than the actual string length. This is because each string is preceded by a count of its number of bytes, as
directed by the .encoding for strings

Repeating this exercise using the compact format produces the following encoding:

Marshaled value Size in bytes Type Byte offset

2 (flags: type ID is a string) 1 byte 0

"::Derived" (type ID) 10 string 1

1)(derivedBool 1 bool 11

"World!")(derivedString 7 string 12

3.14)(derivedDouble 8 double 19

32 (flags: last slice) 1 byte 27

99)(baseInt 4 int 28

"Hello")(baseString 6 string 32

Marshaled representation of the exception using the compact format.

When using the compact format, the receiver know the most-derived type: the only type ID included in the encoding is that of the most-derived type. must
Furthermore, the lack of slice sizes means the receiver cannot skip a slice without knowing how to decode its contents.

Back to Top ^

See Also

Type IDs
Basic Data Encoding
Data Encoding for Classes

https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding#BasicDataEncoding-string
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding
https://doc.zeroc.com/display/IceMatlab/Data+Encoding+for+Classes
https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding
https://doc.zeroc.com/display/IceMatlab/Data+Encoding+for+Classes

	Data Encoding for Exceptions

