
Optional Values

Version 1.1 of the Ice introduces a convenient new feature that allows you to declare data members and parameters as optional. Collectively encoding
called , this feature provides two main benefits for Ice applications:optional values

It offers a simple and natively-supported mechanism for representing values that may or may not be present, without consuming any additional
space in a message when an optional value is not used.
It significantly improves the ability to gradually evolve components of an Ice application while maintaining backward compatibility with existing
deployments.

On this page:

Overview of Optional Values
Optional Parameters in Operations
Optional Data Members in Classes and Exceptions

Guidelines for using Optional Values
Backward Compatibility with Encoding Version 1.0
Using Optional Values Efficiently

Overview of Optional Values
The optional syntax is the same for both parameters and data members:

optional() tag type name

The keyword denotes an optional value with the given tag. The value for must be a non-negative integer.optional tag

Data members and parameters not marked as optional are considered ; a sender must supply values for all required parameters and members.required

Each language mapping defines APIs for passing an optional value, indicating that an optional value is not set, and testing whether an optional value is
set. For example, the three strongly-typed languages that Ice currently supports (C++, C#, and Java) all use a similar API: an type wraps the Optional
optional value and provides methods for examining and changing its value. Refer to the language mapping sections for more details on optional values.

An optional value incurs no additional overhead in the encoding when its value is unset. If an optional parameter or member has a value, its overhead
depends on , including your choice of tag values.several factors

Back to Top ^

Optional Parameters in Operations

An operation may its return value and any of its parameters. The ordering rules for parameters remain unchanged: all input parameters declare as optional
must precede the output parameters.

The following Slice operation declares a mix of optional and required parameters, as well as an optional return value:

Slice

interface Database
{
 optional(3) Record
 lookup(string key, optional(1) Filter f, out optional(2) Cursor matches);
}

We can invoke in C++ as shown below:lookup

If your Slice definitions currently use as an identifier, you can continue using it as an identifier by escaping it as .optional \optional

A well-behaved program must not assume that an optional data member or parameter always has a value.

https://doc.zeroc.com/display/IceMatlab/Best+Practices
https://doc.zeroc.com/display/IceMatlab/Server+Implementation+Techniques
https://doc.zeroc.com/display/IceMatlab/Data+Encoding
https://doc.zeroc.com/display/IceMatlab/Operations#Operations-optional

C++11

std::shared_ptr<DatabasePrx> proxy = ...;
Ice::optional<Cursor> matches;
auto rec = proxy->lookup("someKey", Ice::nullopt, matches);
if(rec)
{
 // lookup returned a value

 if(matches)
 {
 // there are more matches
 }
}

Back to Top ^

Optional Data Members in Classes and Exceptions

Data members can be declared as optional in classes and exceptions. Structures do not support optional data members.

Consider the following example:

Slice

class Account
{
 string accountNo;
 optional(9) Account referrer;
}

We can use in C# as shown below:Account

C#

void printAccount(Account acct)
{
 Console.WriteLine("Account #: " + acct.accountNo);
 if(acct.referrer.HasValue)
 {
 Console.WriteLine("Referrer: " + acct.referrer.Value.accountNo);
 }
 else
 {
 Console.WriteLine("Referrer: None");
 }
}

Account a1 = new Account("100-21807", Ice.Util.None);
printAccount(a1);
Account a2 = new Account("165-75122", a1);
printAccount(a2);

Implicit conversion operators in C# allow us to pass a value of the declared type, or for an unset value, where an optional value is Ice.Util.None
expected.

Back to Top ^

Guidelines for using Optional Values

https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members

Keep the following guidelines in mind while using optional values:

Consider an optional value as a logical unit composed of its tag and type. The parameter or member name is not included in the Ice encoding,
therefore changes to the name do not affect on-the-wire compatibility. Changing the tag of a value is equivalent to adding a new value: the
previous iteration of the value still exists as long as there is at least one deployed program that might use it.
To change the type of an optional value without affecting compatibility with existing deployments, you must also change its tag. You are
essentially deprecating the old value and adding a new one.
Whenever you change the tag of a value, we recommend making a note of the old definition (such as in a Slice comment) so that you do not
accidentally reuse its tag.
Adding a new optional parameter or member does not affect compatibility with existing deployments as long as its tag is not currently in use.
Removing an optional parameter or member does not affect compatibility with existing deployments if programs are written correctly to test for the
presence of the value prior to using it.
The order of declaration is important for required members and parameters, but is not important for optional members and parameters. If you wish
to maintain compatibility with existing deployments, do not change the order of declaration for required members and parameters. Compatibility is
not affected by changes to the order of optional members and parameters.

Back to Top ^

Backward Compatibility with Encoding Version 1.0
Optional values require version 1.1 of the Ice encoding. If the intended receiver only supports version 1.0 of the encoding, the Ice run time in the sender
will omit all optional parameters when marshaling the operation's parameters or results, and omit all optional data members. This behavior makes it
possible for you to add optional parameters to an operation, or optional members to a class or exception, without affecting backward compatibility with
existing deployments that use version 1.0 of the encoding, while gaining the ability to exchange optional values with new deployments that use version 1.1
of the encoding.

For example, suppose existing deployments use the following class definition:

Slice

// Version 1
class Person
{
 string firstName;
 string lastName;
}

We can safely add an optional member without affecting compatibility:

Slice

// Version 2
class Person
{
 string firstName;
 string lastName;
 optional(1) Date birthDate;
}

It is even safe to insert an optional member between two existing members:

Slice

// Version 3
class Person
{
 string firstName;
 optional(2) string middleName;
 string lastName;
 optional(1) Date birthDate;
}

When sending an instance of to a receiver that supports only encoding version 1.0, the optional members are omitted and the encoded form Person
matches our initial version of the class.

A similar situation exists for operations. For example, the following three operations are compatible when using encoding version 1.0:

Slice

Person createPerson(string firstName, string lastName); // V1

Person createPerson(string firstName, string lastName, optional(1) Date birthDate); // V2

Person createPerson(string firstName, optional(2) string middleName, string lastName,
 optional(1) Date birthDate); // V3

Note however that other types of changes can easily .break compatibility

Back to Top ^

Using Optional Values Efficiently
The Ice uses a self-describing format to minimize the overhead associated with optional data members and allow for efficient decoding in a encoding
receiver. The amount of overhead required for a member depends on the member's type and its tag. The type contributes between one and five bytes of
overhead, while the tag value contributes an additional zero to five bytes. Tag values less than 30 add no additional overhead; tag values between 30 and
254 add a single byte, and tag values of 255 or greater add five bytes.

The table below describes the overhead associated with several common Slice types:

Type Overhead (bytes)

Primitive (including)string 1

Proxy 5

Object 1

Sequence of , byte bool 1

Sequence 2-5

Enumerator 1

Structure 2-5

Dictionary 2-5

Refer to the encoding specification for more details on marshaling optional data members.

Back to Top ^

See Also

Data Encoding
Optional Data Members
Optional Parameters and Return Values

The overhead associated with the member's type is out of your control, but you have direct control of the overhead for tags. To minimize this
overhead, use tags in the range zero to 29.

https://doc.zeroc.com/display/IceMatlab/Data+Encoding
https://doc.zeroc.com/display/IceMatlab/Data+Encoding
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/Operations#Operations-optional
https://doc.zeroc.com/display/IceMatlab/Best+Practices
https://doc.zeroc.com/display/IceMatlab/Server+Implementation+Techniques

	Optional Values

