
Acquiring Locks without Deadlocks

For our example, it is fairly easy to avoid the deadlock caused by : instead of holding the lock for the duration of , we set the cyclic dependencies destroy _
 flag under protection of the lock and unlock again before calling on the factory:destroyed _m remove

C++11

void
PhoneEntryI::destroy(const Current& c)
{
 {
 lock_guard<mutex> lock(_m);

 if(_destroyed)
 {
 throw ObjectNotExistException(__FILE__, __LINE__);
 }

 _destroyed = true;

 } // _m is unlocked here.

 _factory->remove(_name, c.adapter);
}

Now deadlock is impossible because no function holds more than one lock, and no function calls another function while it holds a lock. However,
rearranging locks in this fashion can be quite difficult for complex applications. In particular, if an application uses callbacks that do complex things
involving several objects, it can be next to impossible to prove that the code is free of deadlocks. The same is true for applications that use condition
variables and suspend threads until a condition becomes true.

At the core of the problem is that concurrency can create circular locking dependencies: an operation on the factory (such as) can require getDetails
the same locks as a concurrent call to . This is one reason why threaded code is harder to write than sequential code — the interactions among destroy
operations require locks, but dependencies among these locks are not obvious. In effect, locks set up an entirely separate and largely invisible set of
dependencies. For example, it was easy to spot the mutual dependency between the factory and the servants due to the presence of ; in contrast, remove
it was much harder to spot the lurking deadlock in . Worse, deadlocks may not be found during testing and discovered only after deployment, destroy
when it is much more expensive to rectify the problem.

Back to Top ^

See Also

Removing Cyclic Dependencies

https://doc.zeroc.com/display/IceMatlab/Removing+Cyclic+Dependencies
https://doc.zeroc.com/display/IceMatlab/Reaping+Objects
https://doc.zeroc.com/display/IceMatlab/Removing+Cyclic+Dependencies
https://doc.zeroc.com/display/IceMatlab/Removing+Cyclic+Dependencies
https://doc.zeroc.com/display/IceMatlab/Removing+Cyclic+Dependencies
https://doc.zeroc.com/display/IceMatlab/Reaping+Objects

	Acquiring Locks without Deadlocks

