Ice.Plugin.*

On this page:

® [ce.Plugin.name

® |ce.Plugin.name.clr
® [ce.Plugin.name.cpp
® |ce.Plugin.name.java

Ice.Plugin.name

Synopsis

I ce. Pl ugi n. nane=entry_poi nt [args]

Description
Defines a plug-in to be installed during communicator initialization. The format of ent ry_poi nt varies by Ice implementation language, therefore this
property cannot be defined in a configuration file that is shared by programs in different languages. Ice provides an alternate syntax that facilitates such
sharing:

® | ce. Pl ugin. nane. cpp for C++

® | ce. Pl ugin. nane. j ava for Java

® | ce. Plugin. nane. clr forthe NET Common Language Runtime
Refer to the relevant property for your language mapping for details on the entry point syntax.

Back to Top

Ice.Plugin.name.clr

Synopsis

I ce. Pl ugi n. nane. cl r=assenbl y: cl ass [args]

Description

Defines a .NET plug-in to be installed during communicator initialization. The assenbl y component can be a partially or fully qualified assembly name,
such as nypl ugi n, Ver si on=0. 0. 0. 0, Cul t ur e=neut r al , or an assembly DLL name such as nypl ugi n. dl | that may optionally include a leading
relative or absolute path name.

The locations that are searched for the assembly varies depending on how you define the assenbl y component:

Value for assenbl y Example Semantics

Fully-qualified assembly name nypl ugi n, Version=. ..,
(strong-named assembly) Cul ture=neutral, 1. Checks assemblies that have already been loaded
publ i cKeyToken=. .. 2. Searches the Global Assembly Cache (GAC)
3. Searches the directory containing the i ceboxnet executable

Partially-qualified assembly nmypl ugi n
name 1. Checks assemblies that have already been loaded
2. Searches the directory containing the i ceboxnet executable
Relative path name pl ugi ns\ MyPl ugi n. dl | Path name is relative to the application's current working directory. Be
sure to include the . dl | extension in the path name.
Absolute path name C:\ pl ugi ns\ MyPl ugi n. dl | Assembly must reside at the specified path name. Be sure to include

the . dl | extension in the path name.

See MSDN for more information on how the CLR locates assemblies.

The specified cl ass must implement the | ce. Pl ugi nFact or y interface. Any arguments that follow the class name are passed to the factory's cr eat e
method. For example:

https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/display/IceMatlab/Plug-in+API
http://msdn.microsoft.com/en-us/library/yx7xezcf(v=vs.71).aspx

I ce. Pl ugi n. MyPl ugi n. cl r=MyFact ory, Versi on=1. 2. 3. 4: MyFactory argl arg2

Whitespace separates the arguments, and any arguments that contain whitespace must be enclosed in quotes.

If you specify a relative path name in the entry point, the assembly is located relative to the program's current working directory:

Ice.Plugin. MPlugin.clr=..\MWFactory.dl|l: MFactory argl arg2

Enclose the assembly's path name in quotes if it contains spaces:

I ce. Plugin. Pl ugi n. cl r="C:\ Program Fi | es\ M\yPl ugi n\ MyFactory.dl|: MFactory" argl arg2

Back to Top

Ice.Plugin.name.cpp

Synopsis

I ce. Pl ugi n. nane. cpp=pat h[, versi on] : function [args]

Description

Defines a C++ plug-in to be installed during communicator initialization. The pat h and optional ver si on components are used to construct the path name
of a DLL or shared library. If no version is supplied, the Ice version is used. The f unct i on component is the name of a function with C linkage. For
example, the entry point MyPl ugi n, 37: cr eat e would imply a shared library name of | i bMyPI ugi n. so. 37 on Unix and MyPl ugi n37. dl | on
Windows. Furthermore, if Ice is built on Windows with debugging, a d is automatically appended to the version (for example, MyPl ugi n37d. dl |). The
configuration is the same for the C++11 mapping and the C++98 mapping: Ice computes the name of the shared library to load and adds automatically a
"++11" suffix when needed.

The function must be declared with external linkage and have the following signature:

C++11

Ice::Plugin* function(const std::shared_ptr<Ice:: Conmuni cat or >& conmuni cat or,
const std::string& nane,
const lce::StringSeq& args);

C++98

I ce::Plugin* function(const |ce:: Conmmuni catorPtr& conmuni cator,
const std::string& nane,
const lce::StringSeq& args);

Note that the function must return a pointer and not a smart pointer.

Any arguments that follow the entry point are passed to the entry point function. For example:

I ce. Pl ugi n. MyPl ugi n. cpp=MyFactory, 37:create argl arg2

Whitespace separates the arguments, and any arguments that contain whitespace must be enclosed in quotes.

The pat h component may optionally contain a relative or absolute path name, indicated by the presence of a path separator (/ or\). In this case, the last
component of the path is used to construct the version-specific name of the shared library or DLL. Consider this example:

I ce. Pl ugi n. MyPl ugi n. cpp=./ MyFactory, 37: create argl arg2

The use of a relative path means the Ice run time will look in the current working directory for I i bMyPl ugi n. so. 37 on Unix or MyPl ugi n37.dl | on
Windows.

If the pat h component contains spaces, the entire entry point must be enclosed in quotes:

https://doc.zeroc.com/display/IceMatlab/Plug-in+API

I ce. Pl ugi n. MyPl ugi n. cpp="C: \ Program Fi | es\ MyPl ugi n\ M/Factory, 37: create" argl arg2

If the pat h component does not include a leading path name, Ice delegates to the operating system to locate the shared library or DLL, which typically
means that the plug-in can reside in any of the directories in your shared library or DLL search path.

When the plug-in is packaged in a static library and linked into the application through | ce: : r egi st er Pl ugi nFact ory, the entry point (path[,
version]:function) component of this property is ignored. The ar gs, if any, are preserved, and are given to the registered plug-in factory function
when the plug-in is created.

Back to Top

Ice.Plugin.name.java

Synopsis

I ce. Plugi n. nane. j ava=[pat h:] cl ass [args]

Description

Defines a Java plug-in to be installed during communicator initialization. The specified class must implement the com zer oc. | ce. Pl ugi nFact ory
interface. Any arguments that follow the class name are passed to the cr eat e method. For example:

I ce. Pl ugi n. MyPl ugi n. j ava=MyFactory argl arg2

Whitespace separates the arguments, and any arguments that contain whitespace must be enclosed in quotes.

If pat h is specified, it may be the path name of a JAR file or class directory, as shown below:

I ce. Pl ugi n. MyPl ugi n. j ava=MyFactory. jar: MyFactory
I ce. Pl ugi n. MyQ her Pl ugi n. j ava=/ cl asses: MyQt her Fact ory

If pat h contains spaces, it must be enclosed in quotes:

I ce. Plugin. MPlugin.java="factory cl asses.jar": MyFactory

If cl ass is specified without a path, Ice attempts to load the class using class loaders in a well-defined order.

Back to Top

https://doc.zeroc.com/display/IceMatlab/Plug-in+API
https://doc.zeroc.com/display/IceMatlab/Custom+Class+Loaders
https://doc.zeroc.com/display/IceMatlab/Plug-in+API

	Ice.Plugin.*

