
New Features in Ice 3.7
This page describes notable additions and improvements in Ice 3.7. For a detailed list of the changes in this release, please refer to the in the changelog
source tree. Our upgrade guide documents the changes that may affect the operation of your applications or have an impact on your source code.

On this page:

Main New Features
Ice-E and Ice Touch Merged into Ice
New C++11 Mapping

Standard shared_ptr for Everything
AMI
AMD
Movable Parameters

New Java Mapping
AMI
AMD
Out Parameters
Optional Values
Servant Interfaces and Tie Classes
Packaging

C# Support for async and await
AMI
AMD
Out Parameters

JavaScript
JavaScript 6 Updates
JavaScript Changes for AMD

Python Changes for AMI and AMD
AMI
AMD
Python 3.5 Features

New Database Back-end for IceGrid and IceStorm
Bluetooth Transport for Linux and Android
iAP Transport for iOS

Other New Features
Optional Semicolons after Braces in Slice
Simplified Communicator Destruction
Freeze Unbundled

Main New Features
This section describes the major new features included in Ice 3.7.

Ice-E and Ice Touch Merged into Ice

Ice-E and Ice Touch are now part of Ice. They are no longer separate products.

In particular, the latest Ice binary distribution for macOS includes support for Xcode SDKs and iOS. Refer to for Using the macOS binary distribution
information on how to use the Xcode SDKs provided with the Ice binary distribution.

Back to Top ^

New C++11 Mapping

Ice now provides two distinct Slice to C++ mappings:

The C++98 mapping, which corresponds to the C++ mapping provided by prior Ice releases.
A new C++11 mapping, which takes full advantage of C++11 features, including standard smart pointers, move semantics, lambda expressions,
futures and promises, and much more.

We provide an overview of some of the new features in the C++11 mapping below. Please refer to the and chapters for C++11 Mapping C++98 Mapping
additional information.

Standard shared_ptr for Everything

With the C++11 mapping, virtually all Ice objects are manipulated through smart pointers. For example:std::shared_ptr

https://github.com/zeroc-ice/ice/blob/master/CHANGELOG-3.7.md
https://doc.zeroc.com/display/IceMatlab/Using+the+macOS+Binary+Distribution
https://doc.zeroc.com/pages/viewpage.action?pageId=18262602
https://doc.zeroc.com/pages/viewpage.action?pageId=18262658
http://en.cppreference.com/w/cpp/memory/shared_ptr

C++

// ich.communicator() is a std::shared_ptr<Ice::Communicator>
// oa is a std::shared_ptr<Ice::ObjectAdapter>
//
Ice::CommunicatorHolder ich(argc, argv);
auto oa = ich.communicator()->createObjectAdapter("Hello");

// servant is a std::shared_ptr<HelloI>
// proxy is a std::shared_ptr<Ice::ObjectPrx>
//
auto servant = make_shared<HelloI>();
auto proxy = oa->addWithUUID(servant);
oa->activate();

// address is a std::shared<Address> (Address is a mapped Slice class)
//
auto address = make_shared<Address>();
person->address = address;

AMI

With the C++11 mapping, Ice provides two options for : a function that returns a of the result, and a asynchronous method invocation (AMI) std::future
function that takes "callbacks" to process the result. For example, the Slice operation is mapped to a proxy class std::function string getName()
with the following Async functions:

C++

std::future<std::string> getNameAsync(const Ice::Context& context = Ice::noExplicitContext);

std::function<void()>
getNameAsync(std::function<void(std::string)> response,
 std::function<void(std::exception_ptr)> ex = nullptr,
 std::function<void(bool)> sent = nullptr,
 const Ice::Context& context = Ice::noExplicitContext);

Your code can then use the standard future API, or lambda expressions, to process the result of these asynchronous calls. For example:

C++ with std::future

auto fut = proxy->getNameAsync();

try
{
 cout << fut.get() << endl;
}
catch(const std::exception& ex)
{
 // something went wrong...
}

or

C++ with callbacks

proxy->getNameAsync([](string name) { cout << name << endl; },
 [](std::exception_ptr eptr) { ... deal with error... });

AMD

With the C++11 mapping, the API for (AMD) closely resembles its AMI counterpart with callbacks:asynchronous method dispatch

https://doc.zeroc.com/pages/viewpage.action?pageId=18262621
http://en.cppreference.com/w/cpp/thread/future
https://doc.zeroc.com/pages/viewpage.action?pageId=18262630

C++

 virtual void getNameAsync(std::function<void(const std::string&)> response,
 std::function<void(std::exception_ptr)> ex,
 const Ice::Current&) = 0;

Even though the response callbacks are not identical in AMI and AMD, they are compatible, which allows you to easily chain AMD and AMI calls:

C++

// AMD implementation of Person::getName
void
PersonI::getNameAsync(std::function<void(const std::string&)> response,
 std::function<void(std::exception_ptr)> ex,
 const Ice::Current&)
{
 // Call the same operation on _proxy with AMI
 _proxy->getNameAsync(response, ex);
}

Movable Parameters

On the server-side, the generated code allocates parameters on the stack before dispatching the call to your operation implementation. With the C++98 in
mapping, "big" parameters such as strings, structs and sequences are passed as , just like on the client-side. With the C++11 mapping, they are const&
passed as values, which allows you to move them. For example:

Slice

interface TextTransfer
{
 void sendText(string longText);
}

is mapped to:

C++

// Server-side
virtual void sendText(std::string, const Ice::Current&) = 0; // std::string, not const std::string&

So you can now keep this parameter without additional memory allocation:

C++

// Implement sendText
void
TestTransferI::sendText(std::string longText, const Ice::Current&)
{
 std::lock_guard<std::mutex> lk(_mutex);
 _text = std::move(longText); // move-assignment
}

The same rule applies for any parameter that Ice allocates and then gives to your application, like (for example) return and out parameters given to AMI
response callbacks.

Back to Top ^

New Java Mapping

Similar to what we've done for C++, Ice 3.7 supports two Java mappings: and . As its name suggests, the Java Compat mapping is Java Java Compat
provided primarily for backward compatibility purposes so that existing Java applications can be upgraded to Ice 3.7 without requiring much change. Note
however that the Java Compat mapping will be removed in the next release and we recommend migrating applications to the new Java mapping as soon
as possible.

The primary goals of the new Java mapping were modernization, standardization, and simplification. We provide an overview of the new features
below. Please refer to the and chapters for additional information.Java Mapping Java Compat Mapping

Regardless of whether you use the Java Compat mapping or the Java mapping, the minimum required Java version for Ice 3.7 is Java 8.

AMI

The API for (AMI) now uses Java's class. For example, the Slice operation asynchronous method invocation CompletableFuture string getName()
would be mapped as follows:

Java

java.util.concurrent.CompletableFuture<String> getNameAsync()

Clients can easily use lambdas as asynchronous callbacks by configuring the future:

Java

proxy.getNameAsync().whenComplete((name, ex) ->
 {
 if(ex != null)
 {
 // oops!
 }
 else
 {
 System.out.println("got name " + name);
 }
 });

The class provides a great deal of flexibility and power for implementing your asynchronous programming requirements.CompletableFuture

AMD

As with AMI, the API for (AMD) has also changed significantly. Now the mapping closely resembles its AMI counterpart in asynchronous method dispatch
that an AMD operation returns a :CompletionStage

Java

java.util.concurrent.CompletionStage<String> getNameAsync(com.zeroc.Ice.Current current)

The implementation is responsible for creating and returning a completion stage that must eventually be completed with a result or an exception. Typically
the implementation will return an instance of , which implements the interface.CompletableFuture CompletionStage

Out Parameters

The Java mapping no longer uses "holder" classes to provide the values of . For Slice operations that return a single value (either as the out parameters
return type or as an out parameter), the mapped method provides the value as its return type. Consider these operations:

Slice

interface Example
{
 string getNameRet();
 void getNameOut(out string s);
}

The mapping for these two operations is identical:

https://doc.zeroc.com/display/IceMatlab/Java+Mapping
https://doc.zeroc.com/display/IceMatlab/Java+Compat+Mapping
https://doc.zeroc.com/display/IceMatlab/Java+Mapping
https://doc.zeroc.com/display/IceMatlab/Java+Compat+Mapping
https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Invocation+%28AMI%29+in+Java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+Java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html
https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Operations

Java

public interface ExamplePrx ...
{
 String getNameRet();
 String getNameOut();
}

For Slice operations that return multiple values, the mapping generates an extra class to hold the operation's results:

Slice

interface Example
{
 string getAll(out int count);
}

The mapping for is shown below:getAll

Java

public interface Example ...
{
 public static class GetAllResult
 {
 ...
 public String returnValue;
 public int count;
 }
 ...
}

public interface ExamplePrx ...
{
 Example.GetAllResult getAll();
}

Changing the API to ensure that all mapped operations return at most one logical value enabled us to use and CompletableFuture CompletionStage
in our AMI and AMD mappings, respectively.

Optional Values

As part of the standardization goal, optional parameters and data members are now mapped to the family of classes.java.util.Optional

Servant Interfaces and Tie Classes

Tie classes are no longer necessary or supported with the Java mapping. Tie classes were a useful implementation technique in prior Ice versions that
allowed a servant to implement Slice operations without the need to extend a generated class, making it possible for the servant to extend an arbitrary
base class.

Now all servant code is generated in an interface, so your servant class only needs to implement the generated interface and can extend an arbitrary base
class without the need for a tie class.

Packaging

All classes have been moved to the package (e.g.,).com.zeroc com.zeroc.Ice.Communicator

Back to Top ^

C# Support for async and await

The C# mappings for asynchronous method invocation (AMI) and asynchronous method dispatch (AMD) are completely new in Ice 3.7 and take
advantage of the new asynchronous programming features introduced with .NET 4.5.

The proxy API from previous Ice versions is still supported for backward compatibility purposes but is now deprecated and will be removed begin_/end_
in the next Ice version. No backward-compatible API is provided for AMD operations.

The sections below provide an overview of these changes.

AMI

The API for (AMI) now uses .NET's class. For example, the Slice operation would be asynchronous method invocation Task string getName()
mapped as follows:

C#

System.Threading.Tasks.Task<string> getNameAsync()

Clients can use the keyword to suspend processing of the current thread and resume it as a continuation when the task is complete:await

C#

var name = await proxy.getNameAsync();

// use the return value in a continuation...

You could also interact with the task directly:

C#

var task = proxy.getNameAsync();

// do something else

var name = task.Result; // blocks until the result is available

Or configure a lambda to execute as the continuation:

C#

proxy.getNameAsync().ContinueWith((name) =>
 {
 Console.WriteLine("got name " + name);
 });

AMD

As with AMI, the API for (AMD) has also changed significantly. Now the mapping closely resembles its AMI counterpart in asynchronous method dispatch
that an AMD operation returns a :Task

C#

System.Threading.Tasks.Task<string> getNameAsync(Ice.Current current)

The implementation is responsible for creating and returning a task that must eventually be completed with a result or an exception.

Out Parameters

The C# mapping for AMI and AMD no longer uses out parameters. For Slice operations that return a single value (either as the return type or as an out
parameter), the mapped method provides the value as its return type. Consider these operations:

https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Invocation+%28AMI%29+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+C-Sharp

Slice

interface Example
{
 string getNameRet();
 void getNameOut(out string s);
}

The AMI mapping for these two operations is identical:

C#

public interface ExamplePrx ...
{
 Task<string> getNameRetAsync();
 Task<string> getNameOutAsync();
}

For Slice operations that return multiple values, the mapping generates an extra type to hold the operation's results:

Slice

interface Example
{
 string getAll(out int count);
}

The mapping for is shown below:getAll

C#

public struct Example_GetAllResult
{
 ...
 public string returnValue;
 public int count;
}

public interface ExamplePrx ...
{
 Task<Example_GetAllResult> getAllAsync();
}

Changing the API to ensure that all mapped operations return at most one logical value enabled us to use tasks in our AMI and AMD mappings,
respectively.

Back to Top ^

JavaScript

JavaScript 6 Updates

The JavaScript mapping has been updated to take advantage of the latest features present in the EcmaScript 6 standard:

All Promise objects returned by the Ice run time are derived from the standard Promise type.
The mapping for dictionaries is now based on the standard Map type. The type used in previous releases is still supported for a Ice.HashMap
few cases that are not covered by the standard Map type. See for complete details.JavaScript mapping for dictionaries
There is a new mapping for Slice modules based on the new JavaScript import and export keywords. See for JavaScript mapping for modules
more details.

JavaScript Changes for AMD

https://doc.zeroc.com/display/IceMatlab/JavaScript+Mapping+for+Dictionaries
https://doc.zeroc.com/display/IceMatlab/JavaScript+Mapping+for+Modules

The API for Asynchronous Method Dispatch (AMD) has been updated to use the standard Promise class. There are several differences with respect to the
previous API:

The metadata is ignored by the Slice to JavaScript compiler.["amd"]
The Servant skeleton does not generate separate methods for AMD._async
At run time a servant can take advantage of AMD by returning a Promise object.

Consider the following example, where we define a operation in Slice:getName

module M
{
 interface Example
 {
 string getName();
 }
}

The JavaScript implementation can decide at run time to use the synchronous or asynchronous dispatch. If the servant returns a Promise, the Ice run time
uses asynchronous dispatch and marshals the result when the promise is resolved. Otherwise, Ice uses synchronous dispatch and marshals the result
right away. Here's an example that demonstrates the mapping:

class ServantI extends Servant
{
 getName(current)
 {
 if(_name !== undefined)
 {
 return _name; // Use synchronous dispatch
 }
 else
 {
 // Use asynchronous dispatch.
 // All JavaSript proxy invocations return a standard Promise object.
 // We can directly return the promise returned by getName from our
 // servant implementation.
 return _proxy.getName();
 }
 }
}

Back to Top ^

Python Changes for AMI and AMD

We've added a new AMI mapping and modified the AMD mapping in Python.

AMI

The new API for asynchronous method invocation (AMI) uses future objects and adds the suffix to proxy methods. For example, the Slice operation Async
 would be mapped as follows:string getName()

Python

def getNameAsync()

Asynchronous proxy methods return instances of , which has an API similar to the built-in Python types and Ice.Future asyncio.Future concurrent
..futures.Future

Clients can easily configure the future with a completion callback:

The existing AMI mapping is still supported for backward compatibility, but new applications should use the new AMI mapping. The changes to
the AMD mapping break backward compatibility and require modifications to existing applications. Refer to the for more upgrade guide
information.

https://doc.zeroc.com/display/IceMatlab/AMI+in+Python+with+Futures
https://doc.zeroc.com/display/IceMatlab/Upgrading+your+Application+from+Ice+3.6

Python

def callback(future):
 try:
 print("got name " + future.result())
 except:
 # oops!

proxy.getNameAsync().add_done_callback(callback)

The class also provides methods for checking the status of an invocation, cancelling an invocation, and blocking until the invocation Ice.Future
completes, among others.

AMD

The API for (AMD) has changed significantly:asynchronous method dispatch

The suffix is no longer used in the name of a dispatch method_async
The dispatch method does not receive a callback object
The dispatch method can either return results directly (like a synchronous dispatch method), or return a future object to be completed later

In essence, the synchronous and asynchronous mappings have been merged into a single mapping in which the value returned at run time dictates the
semantics of the dispatch. If the implementation returns a future, Ice configures it with a callback and marshals the results when the future completes. For
all other return types, Ice assumes the dispatch completed successfully and marshals the results immediately.

Here's an example:

Python

def getName(self, current=None):
 if self._name:
 return self._name # Name was cached, synchronous dispatch
 else:
 f = Ice.Future() # We have to complete this future eventually
 ...
 return f # Asynchronous dispatch

Python 3.5 Features

The Python mapping adds the following features for applications using Python 3.5 or later:

Servant dispatch methods can be implemented as coroutines
Ice.Future objects are awaitable, meaning they can be targets of the keywordawait

Aside from these features, all of the improvements to the Python mapping can be used in Python 2.x or later.

Back to Top ^

New Database Back-end for IceGrid and IceStorm

IceGrid and IceStorm now store their data in databases. LMDB is a popular embedded database system known for its speed and reliability.LMDB

In prior Ice releases, IceGrid and IceStorm relied on Freeze for persistent storage, and Freeze itself stores its data in Oracle Berkeley DB databases. The
 describe how to migrate your existing IceGrid and IceStorm databases to the new LMDB format.migration instructions

Back to Top ^

Bluetooth Transport for Linux and Android

Our newest transport plug-in enables Ice applications on Linux and Android to communicate with one another via Bluetooth. Once two devices are paired,
establishing a peer-to-peer Bluetooth connection is just as convenient as with any other Ice transport. For example, a client can use a stringified proxy like
this:

objectId:bt -a "01:23:45:67:89:AB" -u dfde1c02-d907-4ca1-bd99-31804c569624

The option denotes the device address of the peer and the option defines the unique identifier (UUID) associated with the desired Ice service on the -a -u
peer device. It's also possible to secure the bluetooth connection with SSL by configuring IceSSL and using a endpoint instead.bts

https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+Python
http://symas.com/mdb/
https://doc.zeroc.com/display/IceMatlab/Upgrading+your+Application+from+Ice+3.6#UpgradingyourApplicationfromIce3.6-lmdb

Our repository includes a new Android sample program that demonstrates how to use the transport. Refer to the for more ice-demos Ice manual
information on the plug-in.

Back to Top ^

iAP Transport for iOS

The new Ice iAP transport enables iOS clients to communicate with accessories over Bluetooth or the Apple Lightning or 30-pin connector.

For example, a client can use a stringified proxy like this to communicate with an accessory that advertises the protocol:com.zeroc.helloWorld

objectId:iap -p com.zeroc.helloWorld

It's also possible to secure the accessory connection with SSL by configuring IceSSL and using an endpoint instead.iaps

Refer to the for more information on the plug-in.Ice manual

Back to Top ^

Other New Features
This section describes other noteworthy features introduced with Ice 3.7.

Optional Semicolons after Braces in Slice

Semicolons are now optional after a closing brace in Slice. For example, with Ice releases up to Ice 3.6, you would write:

Slice

module M
{
 enum E { A, B, C, D };

 interface Foo
 {
 void op();
 };
};

With Ice 3.7, the definitions above remain valid, but you can also remove the semicolons after the closing braces, as in:

Slice

module M
{
 enum E { A, B, C, D }

 interface Foo
 {
 void op();
 }
}

Back to Top ^

Simplified Communicator Destruction

Ice 3.7 provides support for automatic communicator destruction in most programming languages.

C++: RAII HelperIce::CommunicatorHolder

This transport requires special support on the accessory-side and is only provided as a preview to demonstrate how it can be used in iOS
applications to support Bluetooth communications. Please for more information.contact us

https://github.com/zeroc-ice/ice-demos
https://doc.zeroc.com/display/IceMatlab/IceBT
https://doc.zeroc.com/display/IceMatlab/IceIAP
https://doc.zeroc.com/pages/viewpage.action?pageId=18262604
https://zeroc.com/contact

C#: Communicator implements (since Ice 3.6)IDisposable
Java: Communicator is AutoCloseable
Python: Communicator implements the Python context manager protocol

Back to Top ^

Freeze Unbundled

The Freeze persistent service is no longer included in the or in the Ice binary distributions. It's now a separate add-on, with its own ice source repository so
 and binary distributions.urce repository

Back to Top ^

https://doc.zeroc.com/display/IceMatlab/Initialization+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/Initialization+in+Java
https://doc.zeroc.com/display/IceMatlab/Initialization+in+Python
https://github.com/zeroc-ice/ice
https://github.com/zeroc-ice/freeze
https://github.com/zeroc-ice/freeze

	New Features in Ice 3.7

