
Upgrading your Application from Ice 3.6
The subsections below provide additional information about upgrading to Ice 3.7, including administrative procedures for the supported platforms.

On this page:

C++ Changes
IceUtil Library Removed
Stream API
Dispatch Interceptors
IceSSL Certificate Creation
IceSSL Connection Info
OpenSSL Context with IceSSL
C++11 Extensions
lib/c++11 and ++11 Libraries on Linux

C# Changes
AMD
Stream API
Dispatch Interceptors
IceSSL Connection Info

Java Changes
New slice2java Option
JAR Filenames
IceUtil Package Removed
Stream API
Dispatch Interceptors
IceSSL Connection Info

JavaScript Changes
Class Helpers
Dictionary Mapping
Promise Usage
AMD
Mapping for Sequence of Bytes

Objective-C Changes
Dispatch Interceptors
ICEInputStream

PHP changes
Namespace Usage
Loading Ice
Ice Unset

Python Changes
AMD

Ruby Changes
Freeze Persistence Service
Migrating the IceGrid and IceStorm Databases from Freeze to LMDB

IceGrid Migration
IceStorm Migration

Changed APIs
Forward Declared Slice Interfaces and Classes
Connection and Endpoint Information
Connection Changes
Flushing Batch Requests
Classes no longer derive from Object
Interface Operation Parameters

Removed APIs
Deprecated APIs

Operations on Classes
Object Factories
Exception ice_name Method
Thread Hook in Python and C#
Batch Request Interceptor in Python
IcePatch2

C++ Changes
You should be able to rebuild your C++ source code with Ice 3.7 with few if any changes, provided you use the Ice C++98 mapping of Ice 3.7. Upgrading
to the new is a bigger undertaking which requires extensive changes to your source code. As a result, this section deals only with Ice C++11 mapping
upgrades to Ice 3.7 with the C++98 mapping.

See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

https://doc.zeroc.com/pages/viewpage.action?pageId=18262603

IceUtil Library Removed

The core Ice libraries in Ice 3.6 and prior releases were Ice and IceUtil. As of Ice 3.6, IceUtil was merged into Ice, so you can no longer link with IceUtil. On
Linux and macOS, you need to remove from your Makefiles. On Windows, you probably don't need to do anything since all Ice libraries are -lIceUtil
linked through directives in header files (this linking through header files was introduced in Ice 3.6.0).pragma comment lib

Stream API

We made significant changes to the Streaming interfaces in all language mappings. In C++, and are now created through InputStream OutputStream
their constructors and typically stack allocated; in previous releases, they were heap-allocated and created using factory functions in the namespace. Ice
Please refer to for complete details.C++ Streaming Interfaces

The command-line option is no longer supported by .--stream slice2cpp

Dispatch Interceptors

The functions have changed slightly: they now return a bool that indicates whether the request was dispatched synchronously dispatch and ice_dispatch
(true) or asynchronously with AMD (false). They previously returned an enumerator.

IceSSL Certificate Creation

IceSSL Certificates are now created through factory functions, such as . In previous cert = IceSSL::Certificate::load("myCert.pem")
releases, you would create them directly with the constructors of the class.Certificate

IceSSL Connection Info

The member of class is now a sequence of native certificate objects; in previous releases it was a sequence of string certs IceSSL::ConnectionInfo
elements containing the PEM encoded certificates. The type that used to provide the native certificates has been IceSSL::NativeConnectionInfo
removed.

OpenSSL Context with IceSSL

The member functions and , used to set or retrieve an OpenSSL context, are now on the class.setContext getContext IceSSL::OpenSSL::Plugin

C++11 Extensions

Ice 3.6 provided a few extensions for C++11-capable compilers, primarily additional (suitable for lambda AMI overloads with parametersstd::function
expression arguments). These extensions are no longer included in the C++98 mapping. If you want to take advantage of the C++11 features provided by
your C++ compiler, you should upgrade to the Ice C++11 mapping.

 and ++11 Libraries on Linuxlib/c++11

The Ice 3.6 binary distributions for Linux include libraries with a ++11 suffix, such as , and a subdirectory in or withlibIce++11.so.36 c++11 lib lib64
symbolic links to these ++11 libraries. These libraries correspond to a build of Ice using GCC with turned on. This "C++11 build" of Ice 3.6 --std=c++11
provides some C++11 extensions available only in C++11 mode (see above).

In Ice 3.7, these ++11 libraries correspond to the Ice C++11 mapping, and there is no longer a subdirectory of . With Ice 3.7 and GCC 4.8.2 or c++11 lib
greater, you should be able to use the Ice C++98 binaries in any mode (, , etc.). See the GCC page for default --std=c++11 Cxx11AbiCompatibility
more information on ABI compatibility with GCC. Symbolic links to these C++98 libraries (, , etc.) are in the main libIce.so libIceGrid.so lib
directory.

Back to Top ^

C# Changes
You should be able to rebuild your C# source code with Ice 3.7 with few if any changes.

AMD

See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

https://doc.zeroc.com/pages/viewpage.action?pageId=18263161
https://doc.zeroc.com/display/IceMatlab/Dispatch+Interceptors
https://doc.zeroc.com/pages/viewpage.action?pageId=18263243
https://doc.zeroc.com/pages/viewpage.action?pageId=18263243
https://doc.zeroc.com/pages/viewpage.action?pageId=16716059#AsynchronousMethodInvocation(AMI)inC++-LambdaCompletionCallbacksinC++
https://gcc.gnu.org/wiki/Cxx11AbiCompatibility

The AMD (asynchronous method dispatch) mapping has been updated to be Task-based. Applications using AMD should update their servant
implementations to use the new Task-based mapping. Refer to the page for details of the new AMD Asynchronous Method Dispatch (AMD) in C-Sharp
mapping.

Stream API

We made significant changes to the Streaming interfaces in all language mappings. In C#, and are now created through InputStream OutputStream
their constructors; in previous releases, they were created using factory functions in the class. Please refer to for Ice.Util C-Sharp Streaming Interfaces
complete details.

The command-line option is no longer supported by .--stream slice2cs

Dispatch Interceptors

The functions have changed slightly: they now return a for asynchronous dispatch or null dispatch and ice_dispatch Task<Ice.OutputStream>
otherwise. They previously returned an enumerator.

IceSSL Connection Info

The member of class is now a sequence of native certificate objects; in previous releases it was a sequence of string certs IceSSL::ConnectionInfo
elements containing the PEM encoded certificates. The type that used to provide the native certificates has been IceSSL.NativeConnectionInfo
removed.

Back to Top ^

Java Changes
You should be able to rebuild your Java source code with Ice 3.7 with few if any changes, provided you use the mapping of Ice Java Compat
3.7. Upgrading to the is a bigger undertaking which requires extensive changes to your source code. As a result, this section deals only new Java mapping
with upgrades to Ice 3.7 with the Java Compat mapping.

New Optionslice2java

To use the Java Compat mapping, you must add the new option to your invocations of . For Gradle projects, you can set the --compat slice2java
property to enable the Java Compat mapping.slice.compat = true

JAR Filenames

The names of the JAR files for the Java Compat run time now include , such as . compat ice-compat-3.7.0.jar

IceUtil Package Removed

The following classes have moved to the :Freeze repository

IceUtil.Cache
IceUtil.FileLockException
IceUtil.Store

Stream API

We made significant changes to the Streaming interfaces in all language mappings. In Java, and are now created through InputStream OutputStream
their constructors; in previous releases, they were created using factory functions in the class. Please refer to for Ice.Util Java Streaming Interfaces
complete details.

The command-line option is no longer supported by .--stream slice2java

Dispatch Interceptors

The functions have changed slightly: they now return a bool that indicates whether the request was dispatched synchronously dispatch and ice_dispatch
(true) or asynchronously with AMD (false). They previously returned an enumerator.

See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/C-Sharp+Streaming+Interfaces
https://doc.zeroc.com/display/IceMatlab/Dispatch+Interceptors
https://doc.zeroc.com/display/IceMatlab/Java+Compat+Mapping
https://doc.zeroc.com/display/Ice37/New+Features+in+Ice+3.7
https://github.com/zeroc-ice/freeze
https://doc.zeroc.com/display/IceMatlab/Java+Streaming+Interfaces
https://doc.zeroc.com/display/IceMatlab/Dispatch+Interceptors

IceSSL Connection Info

The member of class is now a sequence of native certificate objects; in previous releases it was a sequence of string certs IceSSL::ConnectionInfo
elements containing the PEM encoded certificates. The type that used to provide the native certificates has been IceSSL.NativeConnectionInfo
removed.

Back to Top ^

JavaScript Changes

Class Helpers

The helper method has been removed. The JavaScript keyword or a third-party helper should be used to declare JavaScript classes.Ice.Class class

Dictionary Mapping

The has been updated to use the standard JavaScript type when possible. is still used for dictionaries with mapping for dictionaries Map Ice.HashMap
mutable keys and its API has been updated to match that of JavaScript Map.

Promise Usage

The class in previous version was a custom implementation of the specification. It has been updated to be an extension of the Ice.Promise Promise/A+
standard JavaScript Promise type and most of the non-standard methods have been removed:

Ice.Promise.prototype.exception method has been removed, use instead.Promise.prototype.catch
Ice.Promise.prototype.succeed has been removed, use instead. The method accepted a variable Promise.prototype.resolve succeed
number of arguments; with you can achieve the same by passing an array with the values.resolve
Ice.Promise.prototype.fail has been removed, use instead. The method accepted a variable number of Promise.prototype.reject fail
arguments; with you can achieve the same by passing an array with the values.reject
Ice.Promise.prototype.succeeded, and methods have Ice.Promise.prototype.failed Ice.Promise.prototype.completed
been removed and there are replacements in the standard Promise type. These methods were rarely used in practice.
Ice.Promise completion callbacks no longer provide an parameter as the last argument. If you need to use it you must Ice.AsyncResult
keep a reference to it when invoking a method.
Ice.Promise.all has been removed, use instead.Promise.all

AMD

The ["amd"] metadata is ignored by the compiler. The compiler no longer generates a separate method that receives an AMD callback with slice2js ice
 and member methods. Instead a method can take advantage of AMD (asynchronous method dispatch) by returning a _response ice_exception

Promise object from a servant method.

Mapping for Sequence of Bytes

The mapping for is always the JavaScript type; previously the NodeJS engine used a NodeJS type and browser sequence<byte> Uint8Array Buffer
engines used a . The helper method has been removed; the constructor should be used Uint8Array Ice.Buffer.createNative Uint8Array
instead.

Back to Top ^

Objective-C Changes

Dispatch Interceptors

The functions have changed slightly: they no longer return a bool, user exceptions are now raised by .dispatch and ice_dispatch ice_dispatch

See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

https://doc.zeroc.com/display/IceMatlab/JavaScript+Mapping+for+Dictionaries
https://promisesaplus.com/
http://Ice.Promise.prototype.exception
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/reject
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://doc.zeroc.com/display/IceMatlab/Dispatch+Interceptors

ICEInputStream

The method has been removed from the class.wrapInputStream ICEUtil

Back to Top ^

PHP changes

Namespace Usage

The Ice for PHP extension included in binary distributions is now built with namespaces enabled. All Ice definitions are placed inside Ice namespaces, and
the default mapping for a Slice module is a PHP namespace with the same name. The old flattened mapping has been deprecated and will be removed in
a future release.

To use the old flattened mapping, you need a custom build of the Ice for PHP extension with namespaces disabled and you need to pass the --no-
 option to when compiling your Slice files. Consult the PHP build instructions for details of how to build the PHP extension with namespaces slice2php

namespaces disabled.

Loading Ice

The Ice run time is loaded by independently of whether you are using the namespace mapping (default) or the flattened mapping require Ice.php
(deprecated). Previously, applications using the namespace mapping needed to load Ice_ns.php.

Ice Unset
The unset value for optional parameters with the namespace mapping is rather than ; the latter cannot be used as is a \Ice\None \Ice\Unset unset
PHP keyword. is still available with the flattened mapping.Ice_Unset

Back to Top ^

Python Changes

AMD

The mapping for (AMD) has changed significantly. Asynchronous dispatch methods in existing applications will need to be asynchronous method dispatch
modified as follows:

Remove the suffix from the method name_async
Remove the callback parameter
Change how the method reports results and exceptions
Return an objectIce.Future

A dispatch method now has the option of using synchronous semantics or asynchronous semantics. It can return results directly, in which case Ice
marshals the results immediately, or it can return a future that the implementation must complete later.

Calls to on the callback object must be converted to calls to on the future object. Similarly, calls to on the ice_response set_result ice_exception
callback object must be converted to calls to on the future object.set_exception

Consider this operation:

Slice

string getResults(int id, out bool validated);

Suppose we have this existing implementation:

See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+Python

Python

def getResults_async(self, cb, id, current=None):
 cb.ice_response("answer", True) # Typically done later, e.g., in a separate thread

Using Ice 3.7, we need to convert this implementation as follows:

Python

def getResults(self, id, current=None): # Changed method name, removed callback parameter
 f = Ice.Future()
 f.set_result(("answer", True)) # Typically done later, e.g., in a separate thread
 return f # Return a future

Pay special attention to the value passed to : this method accepts only a single value. If the operation returns multiple values, they must be set_result
supplied in a tuple.

Back to Top ^

Ruby Changes

Back to Top ^

Freeze Persistence Service
The Freeze persistence service, which allows you to store objects defined in Slice in a Berkeley DB database, is no longer bundled with Ice. It is now a
separate add-on.

Migrating the IceGrid and IceStorm Databases from Freeze to LMDB
As of Ice 3.7, IceGrid and IceStorm rely on for persistent storage. In prior releases, IceGrid and IceStorm were using the service for LMDB Freeze
persistent storage; Freeze itself stores its data in Oracle .Berkeley DB

Berkeley DB and LMDB are quite similar: they are both embedded database libraries that require little or no administration and configuration. They both
maintain persistent key-value maps, where keys and values are sequences of bytes. While Berkeley DB creates many files in its DB environment (one file
for each persistent map, log files and more), LMDB creates just two files in its own database enviromnent: a data file (data.mdb) that contains all the
persistent maps, and a lock file (lock.mdb). There are no log files with LMDB, which further simplifies administration compared to Berkeley DB.

This section describes how to migrate an IceGrid registry or an IceStorm instance using Ice 3.5 or 3.6 (with a Freeze database) to an IceGrid registry or
IceStorm instance using Ice 3.7 (with a LMDB database).

IceGrid Migration

Prerequisite: you need the IceGrid database export tool version 3.5 (i) or version 3.6 (). This utility is included in the Ice 3.6 cegriddb35 icegriddb
distribution starting with Ice 3.6.2, but was not included in any Ice 3.5 distribution. If you are migrating from Ice 3.5, you need to build this export tool from
sources: .icegriddb35

To start this migration, first stop the IceGrid registry you wish to upgrade, then export the Freeze/Berkeley DB database environment of your IceGrid
registry:

With icegriddb 3.5 or 3.6

icegriddb --export icegriddb.ixp --dbhome /var/icegrid/db

The export tool's version must match the existing IceGrid registry's version; for example, use with an IceGrid registry 3.5.x.icegriddb icegriddb35

See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

http://symas.com/mdb/
https://doc.zeroc.com/display/Freeze37/Freeze+Manual
https://en.wikipedia.org/wiki/Berkeley_DB
https://github.com/zeroc-ice/ice/tree/3.5/cpp/tools

The resulting file (in our example) is a binary file with the full content of the IceGrid registry database. The utility can import icegriddb.ixp icegriddb
this file into a Freeze/Berkeley DB or LMDB database.

Next, create a directory for your new IceGrid registry LMDB database files:

mkdir /var/icegrid/lmdb

Next, import into this new LMDB database environment directory:icegriddb.ixp

With icegriddb 3.7 or greater

icegriddb --import icegriddb.ixp --dbpath /var/icegrid/lmdb

Finally, edit your IceGrid registry configuration to replace the property with the new propertIceGrid.Registry.Data IceGrid.Registry.LMDB.Path
y:

IceGrid.Registry.LMDB.Path=/var/icegrid/lmdb

If you are upgrading the master IceGrid registry in a replicated environment and the slaves are still running, you should first restart the master registry in
read-only mode using the option, for example:--readonly

icegridregistry --Ice.Config=config.master --readonly

Next, you can connect to the master registry with or the IceGrid administrative GUI from Ice 3.7 to ensure that the database is correct. If icegridadmin
everything looks fine, you can shutdown and restart the master registry without the option.--readonly

IceGrid slaves from Ice <= 3.5 won't interoperate with the IceGrid 3.7 master. You can leave them running during the upgrade of the master to not interrupt
your applications. Once the master upgrade is done, you should upgrade the IceGrid slaves to Ice 3.7 using the instructions above.

Back to Top ^

IceStorm Migration

Prerequisite: you need the IceStorm database export tool version 3.5 (i) or version 3.6 (). This utility is included in the Ice 3.6 cestormdb35 icestormdb
distribution starting with Ice 3.6.2, but was not included in any Ice 3.5 distribution. If you are migrating from Ice 3.5, you need to build this export tool from
sources: .icestormdb35

To start this migration, first stop the IceStorm server you wish to upgrade.

Then export the Freeze/Berkeley DB database environment of your IceStorm server:

With icestormdb 3.5 or 3.6

icestormdb --export icestormdb.ixp --dbhome /var/icestorm/db

The export tool's version must match the existing IceStorm version; for example, use with an IceStorm 3.5.x.icestormdb icestormdb35

The resulting file (in our example) is a binary file with the full content of the IceStorm database.icestormdb.ixp

The utility can import this file into a Freeze/Berkeley DB or LMDB database.icestormdb

Next, create a directory for your new IceStorm LMDB database files:

mkdir /var/icestorm/lmdb

While the instructions above are sufficient for most deployments, you may want to review and IceGrid Persistent Data IceGrid Database Utility
for detailed information about the tool and LMDB configuration options.

If you deployed IceStorm with IceGrid, the IceStorm database environment is typically specified through a Freeze , and the descriptordbenv
corresponding Berkeley DB home directory is in a subdirectory of your .IceGrid node data directory

https://doc.zeroc.com/display/IceMatlab/IceGrid+Database+Utility
https://github.com/zeroc-ice/ice/tree/3.5/cpp/tools
https://doc.zeroc.com/display/IceMatlab/IceStorm+Database+Utility
https://doc.zeroc.com/display/IceMatlab/IceGrid+Persistent+Data
https://doc.zeroc.com/display/IceMatlab/IceGrid+Database+Utility
https://doc.zeroc.com/display/IceMatlab/DbEnv+Descriptor+Element
https://doc.zeroc.com/display/IceMatlab/IceGrid+Persistent+Data

Now import into this new LMDB database environment directory:icestormdb.ixp

With icestormdb 3.7 or greater

icestormdb --import icestormdb.ixp --dbpath /var/icestorm/lmdb

Finally, edit your IceStorm configuration file and replace the property with the new property Freeze.DbEnv.<Service Name>.DBHome <Service
.Name>.LMDB.Path

Back to Top ^

Changed APIs
This section describes APIs common to multiple language mappings (often specified using Slice) that have changed, potentially in ways that are
incompatible with previous releases.

Forward Declared Slice Interfaces and Classes

A must be fully defined in the same Slice translation unit if any Slice definition in this translation unit uses a proxy of this forward declared interface or class
interface (or class), or uses this forward declarated class in a non-local context (typically as a parameter in a non local operation).

Connection and Endpoint Information

The local classes , and all derived classes (, , and Ice::EndpointInfo Ice::ConnectionInfo Ice::IPEndpointInfo IceSSL::EndpointInfo
etc.) were refactored. These classes now support an data member that provides information on the underlying transport. For example, the underlying ssl
transport is based on the transport so the data member of an endpoint or connection will contain an instance of tcp underlying ssl Ice::

 or . See for additional information.TCPEndpointInfo Ice::TCPConnectionInfo Using Connections

Connection Changes

The API for has changed in several ways:Ice::Connection

there are now separate callbacks for the close and heartbeat callbacks
Connection::close now accepts an enum parameter instead of a bool

Flushing Batch Requests

These operations now take an additional parameter to control compression.

Classes no longer derive from Object

(Affects all language mappings except: C++98, Java Compat, Objective-C)

In Ice 3.6 and prior releases, a Slice class derives implicitly from , just like Slice interfaces. In Ice 3.7, Slice classes derive implicitly from (a Object Value
new keyword). Slice interfaces still implicitly inherit from .Object

When mapped to C#, C++ with the C++11 mapping, Java, JavaScript, Python and more, the corresponding mapped native class no longer derives from Ic
. It derives instead from . Let's take an example:e::Object Ice::Value

When IceStorm is deployed through IceGrid, a typical and recommended directory for this LMDB database is .${service.data}

While the instructions above are sufficient for most deployments, you may want to review and IceStorm Persistent Data IceStorm Database
 for detailed information about the tool and LMDB configuration options.Utility

https://doc.zeroc.com/display/Ice37/Forward+Declarations
https://doc.zeroc.com/display/IceMatlab/Using+Connections
https://doc.zeroc.com/display/IceMatlab/Using+Connections
https://doc.zeroc.com/display/IceMatlab/Using+Connections
https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/Using+Descriptor+Variables+and+Parameters
https://doc.zeroc.com/display/IceMatlab/IceStorm+Persistent+Data
https://doc.zeroc.com/display/IceMatlab/IceStorm+Database+Utility
https://doc.zeroc.com/display/IceMatlab/IceStorm+Database+Utility

Slice

module M
{
 class A
 {
 string x;
 };
};

This Slice class is mapped to:A

C#

// 3.6
public partial class A : Ice.Object
{
 ...
}

// 3.7
public partial class A : Ice.Value
{
 ...
}

JavaScript

// 3.6
M.A = class extends Ice.Object
{
 ...
};

// 3.7
M.A = class extends Ice.Value
{
 ...
};

Python

3.6
class A(Ice.Object):
 ...

3.7
class A(Ice.Value):
 ...

Moreover, an operation on a Slice class is no longer mapped to an abstract method on the corresponding native class: the Slice compiler generates
instead a separate skeleton class (typically with a suffix) with the mapped method.Disp

In a similar fashion, the mapped class for a Slice class that implements an interface no longer implements anything related to this interface. The Slice
compiler generates instead a separate, independent skeleton class that implements the mapped interface.

Interface Operation Parameters

(Affects all language mappings except: C++98, Java Compat, Objective-C)

In Ice 3.6 and prior releases, you could use an interface as the type for an operation parameter, for example:

In the language mappings unaffected by this change - C++98, Java Compat and Objective-C - and are mapped to the same Value Object
native class.

Slice

module M
{
 interface Marker
 {
 string print();
 };

 interface Receiver
 {
 Marker op(Marker x); // Marker not Marker*, i.e. pass-by-value
 };

 class A implements Marker
 {
 string msg;
 };
};

This way, only instances of Slice classes that implement this interface would be accepted as a parameter to this operation.

With Ice 3.7, the Slice definitions above remain valid, but the parameters are now mapped like s. For example, t interface is mapped Value he Receiver
to the following proxy and skeleton classes in C#:

C#

// Proxy
public interface ReceiverPrx : Ice.ObjectPrx
{
 Ice.Value op(Ice.Value x, Ice.OptionalContext context = new Ice.OptionalContext());
 ...
}

// Skeleton
public abstract class ReceiverDisp_ : Ice.ObjectImpl, Receiver
{
 public abstract Ice.Value op(Ice.Value x, Ice.Current current = null);
 ...
}

Back to Top ^

Removed APIs
The following APIs were removed in this release:

Interface (replaced by and Ice::ConnectionCallback Ice::HeartbeatCallback Ice::CloseCallback)
Operation (replaced by the and operations) Ice::Connection::setCallback setCloseCallback setHeartbeatCallback
Exception (replaced by Ice::NoObjectFactoryException Ice::NoValueFactoryException)
Exception (replaced by Ice::ForcedCloseConnectionException Ice::ConnectionManuallyClosedException)
Class (replaced by) Ice::UnknownSlicedObject Ice::UnknownSlicedValue

Back to Top ^

Deprecated APIs
This section describes the APIs that are deprecated in this Ice release, and will be removed in a future release. If your application uses one or more of the
APIs listed below, we recommend updating it as soon as possible.

In the unusual situation where you need to send an interface "instance" by value, where the value carries only the interface's type id, each
language mapping provides a new helper class for this purpose named .InterfaceByValue

Operations on Classes

Operations on Slice classes are now deprecated: when feasible, you should convert these classes to interfaces (with only operations and no data
members) or to classes without operations. If you need to keep classes with operations for interoperability with older applications, the global metadata
directive allows you to compile your Slice files without warnings.suppress-warning:deprecated

Likewise, having a Slice class implement one or more interfaces is now deprecated.

Object Factories

Object factories are now referred as value factories following the deprecation of classes with operations. As a result, the following oIce::Communicator
perations have been deprecated:

Communicator::addObjectFactory
Communicator::findObjectFactory

You should now use the interface returned by to manage value factories.ValueFactoryManager Communicator::getValueFactoryManager

Exception Methodice_name

The method for Ice exceptions has been deprecated in the various language mappings. It has been replaced by a new method.ice_name ice_id

Thread Hook in Python and C#

The member of is deprecated. The new members and can be set to callable objects threadHook InitializationData threadStart threadStop
(Python) or delegates (C#).System.Action

Batch Request Interceptor in Python

The class is deprecated. The member of can be set to a Ice.BatchRequestInterceptor batchRequestInterceptor InitializationData
callable object.

IcePatch2

IcePatch2 and IceGrid's distribution mechanism (based on IcePatch2) are now deprecated.

Back to Top ^

Local classes with operations are not deprecated. Such local classes are used by some Ice APIs, such as .Ice::EndpointInfo

https://doc.zeroc.com/display/IceMatlab/Slice+Metadata+Directives

	Upgrading your Application from Ice 3.6

