Upgrading your Application from Ice 3.6

The subsections below provide additional information about upgrading to Ice 3.7, including administrative procedures for the supported platforms.

On this page:

® C++ Changes

© IceUtil Library Removed
Stream API
Dispatch Interceptors
IceSSL Certificate Creation
IceSSL Connection Info
OpenSSL Context with lceSSL
C++11 Extensions

O lib/c++11 and ++11 Libraries on Linux
® C# Changes

© AMD

o Stream API

© Dispatch Interceptors

© |ceSSL Connection Info
® Java Changes

© New slice2java Option

© JAR Filenames

© IceUtil Package Removed

o]

o]

[e]
[e]
[e]
[e]
[e]
[e]

Stream API
Dispatch Interceptors
O |ceSSL Connection Info
® JavaScript Changes
© Class Helpers
© Dictionary Mapping
© Promise Usage
© AMD
© Mapping for Sequence of Bytes
® Objective-C Changes
© Dispatch Interceptors
© ICEInputStream
® PHP changes
© Namespace Usage
O Loading Ice
© Ice Unset
® Python Changes
° AMD
® Ruby Changes
® Freeze Persistence Service
® Migrating the IceGrid and IceStorm Databases from Freeze to LMDB
© IceGrid Migration
© |ceStorm Migration
® Changed APIs
© Forward Declared Slice Interfaces and Classes
Connection and Endpoint Information
Connection Changes
Flushing Batch Requests
Classes no longer derive from Object
© Interface Operation Parameters
® Removed APIs
® Deprecated APIs
© OQOperations on Classes
O Object Factories
O Exception ice_name Method
© Thread Hook in Python and C#
© Batch Request Interceptor in Python
o IcePatch2

[e]
[e]
[e]
[e]

C++ Changes

You should be able to rebuild your C++ source code with Ice 3.7 with few if any changes, provided you use the Ice C++98 mapping of Ice 3.7. Upgrading
to the new Ice C++11 mapping is a bigger undertaking which requires extensive changes to your source code. As a result, this section deals only with
upgrades to Ice 3.7 with the C++98 mapping.

@ See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

https://doc.zeroc.com/pages/viewpage.action?pageId=18262603

IceUtil Library Removed
The core Ice libraries in Ice 3.6 and prior releases were Ice and IceUtil. As of Ice 3.6, IceUtil was merged into Ice, so you can no longer link with IceUtil. On

Linux and macOS, you need to remove - | | ceUti | from your Makefiles. On Windows, you probably don't need to do anything since all Ice libraries are
linked through pr agna conmmrent | i b directives in header files (this linking through header files was introduced in Ice 3.6.0).

Stream API

We made significant changes to the Streaming interfaces in all language mappings. In C++, | nput St r eamand Qut put St r eamare now created through
their constructors and typically stack allocated; in previous releases, they were heap-allocated and created using factory functions in the | ce namespace.
Please refer to C++ Streaming Interfaces for complete details.

The command-line option - - st r eamis no longer supported by sl i ce2cpp.

Dispatch Interceptors

The dispatch and ice_dispatch functions have changed slightly: they now return a bool that indicates whether the request was dispatched synchronously
(true) or asynchronously with AMD (false). They previously returned an enumerator.

IceSSL Certificate Creation

IceSSL Certificates are now created through factory functions, suchascert = l1ceSSL:: Certificate::load("myCert.pent). In previous
releases, you would create them directly with the constructors of the Cer ti fi cat e class.

IceSSL Connection Info

The certs member of | ceSSL: : Connect i onl nf o class is now a sequence of native certificate objects; in previous releases it was a sequence of string

elements containing the PEM encoded certificates. The | ceSSL: : Nat i veConnect i onl nf o type that used to provide the native certificates has been
removed.

OpenSSL Context with lceSSL

The member functions set Cont ext and get Cont ext , used to set or retrieve an OpenSSL context, are now on the | ceSSL: : OpenSSL: : Pl ugi n class.

C++11 Extensions

Ice 3.6 provided a few extensions for C++11-capable compilers, primarily additional AMI overloads with st d: : f unct i on parameters (suitable for lambda
expression arguments). These extensions are no longer included in the C++98 mapping. If you want to take advantage of the C++11 features provided by
your C++ compiler, you should upgrade to the Ice C++11 mapping.

|i b/ c++11 and ++11 Libraries on Linux

The Ice 3.6 binary distributions for Linux include libraries with a ++11 suffix, such as | i bl ce++11. so. 36, and a c++11 subdirectory in| i b or | i b64 with
symbolic links to these ++11 libraries. These libraries correspond to a build of Ice using GCC with - - st d=c++11 turned on. This "C++11 build" of Ice 3.6
provides some C++11 extensions available only in C++11 mode (see above).

In Ice 3.7, these ++11 libraries correspond to the Ice C++11 mapping, and there is no longer a c++11 subdirectory of | i b. With Ice 3.7 and GCC 4.8.2 or
greater, you should be able to use the Ice C++98 binaries in any mode (def aul t, --std=c++11, etc.). See the GCC Cxx11AbiCompatibility page for

more information on ABI compatibility with GCC. Symbolic links to these C++98 libraries (I i bl ce. so, i bl ceG i d. so, etc.) are in the main | i b
directory.

Back to Top

C# Changes

You should be able to rebuild your C# source code with Ice 3.7 with few if any changes.

@ See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

AMD

https://doc.zeroc.com/pages/viewpage.action?pageId=18263161
https://doc.zeroc.com/display/IceMatlab/Dispatch+Interceptors
https://doc.zeroc.com/pages/viewpage.action?pageId=18263243
https://doc.zeroc.com/pages/viewpage.action?pageId=18263243
https://doc.zeroc.com/pages/viewpage.action?pageId=16716059#AsynchronousMethodInvocation(AMI)inC++-LambdaCompletionCallbacksinC++
https://gcc.gnu.org/wiki/Cxx11AbiCompatibility

The AMD (asynchronous method dispatch) mapping has been updated to be Task-based. Applications using AMD should update their servant
implementations to use the new Task-based mapping. Refer to the Asynchronous Method Dispatch (AMD) in C-Sharp page for details of the new AMD
mapping.

Stream API

We made significant changes to the Streaming interfaces in all language mappings. In C#, | nput St r eamand Qut put St r eamare now created through
their constructors; in previous releases, they were created using factory functions inthe I ce. Uti | class. Please refer to C-Sharp Streaming Interfaces for
complete details.

The command-line option - - st r eamis no longer supported by sl i ce2cs.

Dispatch Interceptors

The dispatch and ice_dispatch functions have changed slightly: they now return a Task<I ce. Qut put St r ean® for asynchronous dispatch or null
otherwise. They previously returned an enumerator.

IceSSL Connection Info

The cert s member of | ceSSL: : Connect i onl nf o class is now a sequence of native certificate objects; in previous releases it was a sequence of string
elements containing the PEM encoded certificates. The | ceSSL. Nat i veConnect i onl nf o type that used to provide the native certificates has been

removed.

Back to Top

Java Changes

You should be able to rebuild your Java source code with Ice 3.7 with few if any changes, provided you use the Java Compat mapping of Ice
3.7. Upgrading to the new Java mapping is a bigger undertaking which requires extensive changes to your source code. As a result, this section deals only
with upgrades to Ice 3.7 with the Java Compat mapping.

@ See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

New sl i ce2j ava Option

To use the Java Compat mapping, you must add the new - - conpat option to your invocations of sl i ce2j ava. For Gradle projects, you can set the
property sl i ce. conpat = true to enable the Java Compat mapping.

JAR Filenames

The names of the JAR files for the Java Compat run time now include conpat , such asi ce-conpat-3.7.0.jar.

| ceUti| Package Removed

The following classes have moved to the Freeze repository:
® lIceltil.Cache

® lceltil.FileLockException
® lceltil.Store

Stream API

We made significant changes to the Streaming interfaces in all language mappings. In Java, | nput St r eamand Qut put St r eamare now created through
their constructors; in previous releases, they were created using factory functions in the I ce. Uti | class. Please refer to Java Streaming Interfaces for
complete details.

The command-line option - - st r eamis no longer supported by sl i ce2j ava.

Dispatch Interceptors

The dispatch and ice_dispatch functions have changed slightly: they now return a bool that indicates whether the request was dispatched synchronously
(true) or asynchronously with AMD (false). They previously returned an enumerator.

https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/C-Sharp+Streaming+Interfaces
https://doc.zeroc.com/display/IceMatlab/Dispatch+Interceptors
https://doc.zeroc.com/display/IceMatlab/Java+Compat+Mapping
https://doc.zeroc.com/display/Ice37/New+Features+in+Ice+3.7
https://github.com/zeroc-ice/freeze
https://doc.zeroc.com/display/IceMatlab/Java+Streaming+Interfaces
https://doc.zeroc.com/display/IceMatlab/Dispatch+Interceptors

IceSSL Connection Info

The certs member of | ceSSL: : Connect i onl nf o class is now a sequence of native certificate objects; in previous releases it was a sequence of string
elements containing the PEM encoded certificates. The | ceSSL. Nat i veConnect i onl nf o type that used to provide the native certificates has been
removed.

Back to Top

JavaScript Changes

@ See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

Class Helpers

The | ce. A ass helper method has been removed. The JavaScript cl ass keyword or a third-party helper should be used to declare JavaScript classes.

Dictionary Mapping

The mapping for dictionaries has been updated to use the standard JavaScript Map type when possible. | ce. HashMap is still used for dictionaries with
mutable keys and its API has been updated to match that of JavaScript Map.

Promise Usage

The | ce. Prom se class in previous version was a custom implementation of the Promise/A+ specification. It has been updated to be an extension of the
standard JavaScript Promise type and most of the non-standard methods have been removed:

® | ce. Promi se. prot ot ype. except i on method has been removed, use Promise.prototype.catch instead.

® | ce. Pronise. prototype. succeed has been removed, use Promise.prototype.resolve instead. The succeed method accepted a variable
number of arguments; with r esol ve you can achieve the same by passing an array with the values.

® |ce. Pronise. prototype. fail has beenremoved, use Promise.prototype.reject instead. The f ai | method accepted a variable number of
arguments; with r ej ect you can achieve the same by passing an array with the values.

® |ce. Pronise. prototype. succeeded, | ce. Proni se. prototype.failedandlce. Pronm se. prot ot ype. conpl et ed methods have
been removed and there are replacements in the standard Promise type. These methods were rarely used in practice.

® | ce. Prom se completion callbacks no longer provide an | ce. AsyncResul t parameter as the last argument. If you need to use it you must
keep a reference to it when invoking a method.

® |ce. Pronise. al | has been removed, use Promise.all instead.

AMD

The ["amd"] metadata is ignored by the sl i ce2j s compiler. The compiler no longer generates a separate method that receives an AMD callback with i ce
_response and i ce_except i on member methods. Instead a method can take advantage of AMD (asynchronous method dispatch) by returning a
Promise object from a servant method.

Mapping for Sequence of Bytes

The mapping for sequence<byt e> is always the Ui nt 8Ar r ay JavaScript type; previously the NodeJS engine used a NodeJS Buf f er type and browser

engines used a Ui nt 8Arr ay. The helper method | ce. Buf f er. cr eat eNat i ve has been removed; the Ui nt 8Ar r ay constructor should be used
instead.

Back to Top

Objective-C Changes

See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

Dispatch Interceptors

The dispatch and ice_dispatch functions have changed slightly: they no longer return a bool, user exceptions are now raised by i ce_di spat ch.

https://doc.zeroc.com/display/IceMatlab/JavaScript+Mapping+for+Dictionaries
https://promisesaplus.com/
http://Ice.Promise.prototype.exception
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/reject
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://doc.zeroc.com/display/IceMatlab/Dispatch+Interceptors

ICEInputStream
The wr apl nput St r eammethod has been removed from the | CEUt i | class.

Back to Top

PHP changes

@ See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

Namespace Usage

The Ice for PHP extension included in binary distributions is now built with namespaces enabled. All Ice definitions are placed inside Ice namespaces, and
the default mapping for a Slice module is a PHP namespace with the same name. The old flattened mapping has been deprecated and will be removed in
a future release.

To use the old flattened mapping, you need a custom build of the Ice for PHP extension with namespaces disabled and you need to pass the - - no-

namespaces option to sl i ce2php when compiling your Slice files. Consult the PHP build instructions for details of how to build the PHP extension with
namespaces disabled.

Loading Ice
The Ice run time is loaded by r equi r e | ce. php independently of whether you are using the namespace mapping (default) or the flattened mapping

(deprecated). Previously, applications using the namespace mapping needed to load | ce_ns. php.

Ice Unset

The unset value for optional parameters with the namespace mapping is \ | ce\ None rather than \ | ce\ Unset ; the latter cannot be used as unset is a
PHP keyword. | ce_Unset is still available with the flattened mapping.

Back to Top

Python Changes

@ See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

AMD

The mapping for asynchronous method dispatch (AMD) has changed significantly. Asynchronous dispatch methods in existing applications will need to be
modified as follows:

® Remove the _async suffix from the method name

® Remove the callback parameter

® Change how the method reports results and exceptions
® Return an | ce. Fut ur e object

A dispatch method now has the option of using synchronous semantics or asynchronous semantics. It can return results directly, in which case Ice
marshals the results immediately, or it can return a future that the implementation must complete later.

Calls to i ce_r esponse on the callback object must be converted to calls to set _r esul t on the future object. Similarly, calls to i ce_excepti on on the
callback object must be converted to calls to set _except i on on the future object.

Consider this operation:

Slice

string getResults(int id, out bool validated);

Suppose we have this existing implementation:

https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+Python

Python

def getResults_async(self, cb, id, current=None):
cb.ice_response("answer", True) # Typically done later, e.g., in a separate thread

Using Ice 3.7, we need to convert this implementation as follows:

Python

def getResults(self, id, current=None): # Changed met hod nane, renoved cal | back paraneter

f = lce.Future()
f.set_result(("answer", True)) # Typically done later, e.g., in a separate thread
return f # Return a future

Pay special attention to the value passed to set _r esul t : this method accepts only a single value. If the operation returns multiple values, they must be
supplied in a tuple.

Back to Top

Ruby Changes

@ See also the subsections Changed APIs and Removed APIs for information about APIs defined in Slice and therefore common to all language
mappings.

Back to Top

Freeze Persistence Service

The Freeze persistence service, which allows you to store objects defined in Slice in a Berkeley DB database, is no longer bundled with Ice. It is now a
separate add-on.

Migrating the IceGrid and IceStorm Databases from Freeze to LMDB

As of Ice 3.7, IceGrid and IceStorm rely on LMDB for persistent storage. In prior releases, IceGrid and IceStorm were using the Freeze service for
persistent storage; Freeze itself stores its data in Oracle Berkeley DB.

Berkeley DB and LMDB are quite similar: they are both embedded database libraries that require little or no administration and configuration. They both
maintain persistent key-value maps, where keys and values are sequences of bytes. While Berkeley DB creates many files in its DB environment (one file
for each persistent map, log files and more), LMDB creates just two files in its own database enviromnent: a data file (data.mdb) that contains all the
persistent maps, and a lock file (lock.mdb). There are no log files with LMDB, which further simplifies administration compared to Berkeley DB.

This section describes how to migrate an IceGrid registry or an IceStorm instance using Ice 3.5 or 3.6 (with a Freeze database) to an IceGrid registry or
IceStorm instance using Ice 3.7 (with a LMDB database).

IceGrid Migration
Prerequisite: you need the IceGrid database export tool version 3.5 (icegri ddb35) or version 3.6 (i cegr i ddb). This utility is included in the Ice 3.6

distribution starting with Ice 3.6.2, but was not included in any Ice 3.5 distribution. If you are migrating from Ice 3.5, you need to build this export tool from
sources: icegriddb35.

To start this migration, first stop the IceGrid registry you wish to upgrade, then export the Freeze/Berkeley DB database environment of your IceGrid
registry:

With icegriddb 3.5 or 3.6

icegriddb --export icegriddb.ixp --dbhone /var/icegrid/db

The i cegri ddb export tool's version must match the existing IceGrid registry's version; for example, use i cegr i ddb35 with an IceGrid registry 3.5.x.

http://symas.com/mdb/
https://doc.zeroc.com/display/Freeze37/Freeze+Manual
https://en.wikipedia.org/wiki/Berkeley_DB
https://github.com/zeroc-ice/ice/tree/3.5/cpp/tools

The resulting file (i cegri ddb. i xp in our example) is a binary file with the full content of the IceGrid registry database. The i cegr i ddb utility can import
this file into a Freeze/Berkeley DB or LMDB database.

Next, create a directory for your new IceGrid registry LMDB database files:

nkdir /var/icegrid/lmmb

Next, import i cegri ddb. i xp into this new LMDB database environment directory:

With icegriddb 3.7 or greater

icegriddb --inmport icegriddb.ixp --dbpath /var/icegrid/|ndb
Finally, edit your IceGrid registry configuration to replace the | ceGri d. Regi st ry. Dat a property with the new | ceGri d. Regi st ry. LMDB. Pat h propert
y:

I ceGrid. Registry. LMDB. Pat h=/var/icegrid/| mb

@ While the instructions above are sufficient for most deployments, you may want to review IceGrid Persistent Data and IceGrid Database Utility
for detailed information about the tool and LMDB configuration options.

If you are upgrading the master IceGrid registry in a replicated environment and the slaves are still running, you should first restart the master registry in
read-only mode using the - - r eadonl y option, for example:

icegridregistry --Ice.Config=config.master --readonly

Next, you can connect to the master registry with i cegri dadmi n or the IceGrid administrative GUI from Ice 3.7 to ensure that the database is correct. If
everything looks fine, you can shutdown and restart the master registry without the - - r eadonl y option.

IceGrid slaves from Ice <= 3.5 won't interoperate with the IceGrid 3.7 master. You can leave them running during the upgrade of the master to not interrupt
your applications. Once the master upgrade is done, you should upgrade the IceGrid slaves to Ice 3.7 using the instructions above.

Back to Top »

IceStorm Migration
Prerequisite: you need the IceStorm database export tool version 3.5 (icest or ndb35) or version 3.6 (i cest or ndb). This utility is included in the Ice 3.6

distribution starting with Ice 3.6.2, but was not included in any Ice 3.5 distribution. If you are migrating from Ice 3.5, you need to build this export tool from
sources: icestormdb35.

To start this migration, first stop the IceStorm server you wish to upgrade.
Then export the Freeze/Berkeley DB database environment of your IceStorm server:

With icestormdb 3.5 or 3.6

icestormdb --export icestorndb.ixp --dbhone /var/icestorm db

The i cest or ndb export tool's version must match the existing IceStorm version; for example, use i cest or nrdb35 with an IceStorm 3.5.x.

The resulting file (i cest or mdb. i xp in our example) is a binary file with the full content of the IceStorm database.

If you deployed IceStorm with IceGrid, the IceStorm database environment is typically specified through a Freeze dbenv descriptor, and the
corresponding Berkeley DB home directory is in a subdirectory of your IceGrid node data directory.

The i cest or ndb utility can import this file into a Freeze/Berkeley DB or LMDB database.

Next, create a directory for your new IceStorm LMDB database files:

nkdir /var/icestorm | mdb

https://doc.zeroc.com/display/IceMatlab/IceGrid+Database+Utility
https://github.com/zeroc-ice/ice/tree/3.5/cpp/tools
https://doc.zeroc.com/display/IceMatlab/IceStorm+Database+Utility
https://doc.zeroc.com/display/IceMatlab/IceGrid+Persistent+Data
https://doc.zeroc.com/display/IceMatlab/IceGrid+Database+Utility
https://doc.zeroc.com/display/IceMatlab/DbEnv+Descriptor+Element
https://doc.zeroc.com/display/IceMatlab/IceGrid+Persistent+Data

Now import i cest or mdb. i xp into this new LMDB database environment directory:

With icestormdb 3.7 or greater

icestorndb --inport icestorndb.ixp --dbpath /var/icestorn | ndb

Finally, edit your IceStorm configuration file and replace the Fr eeze. DbEnv. <Ser vi ce Nane>. DBHone property with the new property <Ser vi ce
Nane>. LMDB. Pat h.

@ When IceStorm is deployed through IceGrid, a typical and recommended directory for this LMDB database is ${ ser vi ce. dat a} .

@ While the instructions above are sufficient for most deployments, you may want to review IceStorm Persistent Data and IceStorm Database
Utility for detailed information about the tool and LMDB configuration options.

Back to Top

Changed APlIs

This section describes APls common to multiple language mappings (often specified using Slice) that have changed, potentially in ways that are
incompatible with previous releases.

Forward Declared Slice Interfaces and Classes

A forward declared interface or class must be fully defined in the same Slice translation unit if any Slice definition in this translation unit uses a proxy of this
interface (or class), or uses this forward declarated class in a non-local context (typically as a parameter in a non local operation).

Connection and Endpoint Information

The local classes | ce: : Endpoi nt I nfo and | ce: : Connecti onl nf o, and all derived classes (I ce: : | PEndpoi nt1 nfo, | ceSSL: : Endpoi nt | nf o,
etc.) were refactored. These classes now support an under | yi ng data member that provides information on the underlying transport. For example, the ssl

transport is based on the t cp transport so the under | yi ng data member of an ssl endpoint or connection will contain an instance of | ce: :
TCPEndpoi ntI nfo orl ce:: TCPConnect i onl nf 0. See Using Connections for additional information.

Connection Changes

The API for Ice::Connection has changed in several ways:

® there are now separate callbacks for the close and heartbeat callbacks
® Connecti on:: cl ose now accepts an enum parameter instead of a bool

Flushing Batch Requests

These operations now take an additional parameter to control compression.

Classes no longer derive from Object

(Affects all language mappings except: C++98, Java Compat, Objective-C)

In Ice 3.6 and prior releases, a Slice class derives implicitly from Obj ect , just like Slice interfaces. In Ice 3.7, Slice classes derive implicitly from Val ue (a
new keyword). Slice interfaces still implicitly inherit from Qbj ect .

When mapped to C#, C++ with the C++11 mapping, Java, JavaScript, Python and more, the corresponding mapped native class no longer derives from | ¢
e: : Obj ect . It derives instead from | ce: : Val ue. Let's take an example:

https://doc.zeroc.com/display/Ice37/Forward+Declarations
https://doc.zeroc.com/display/IceMatlab/Using+Connections
https://doc.zeroc.com/display/IceMatlab/Using+Connections
https://doc.zeroc.com/display/IceMatlab/Using+Connections
https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/Using+Descriptor+Variables+and+Parameters
https://doc.zeroc.com/display/IceMatlab/IceStorm+Persistent+Data
https://doc.zeroc.com/display/IceMatlab/IceStorm+Database+Utility
https://doc.zeroc.com/display/IceMatlab/IceStorm+Database+Utility

Slice

modul e M
{
class A
{
string x;
s
}

This Slice class Ais mapped to:

C#
/Il 3.6

public partial class A :

{
}

Il 3.7

public partial class A:

{
}

JavaScript
/Il 3.6

| ce. vj ect

| ce. Val ue

M A = class extends |ce. Obj ect

{
}

11 3.7

M A = cl ass extends I|ce. Val ue

{

3

Python

3.6
class A(lce. Ovject):

3.7
class A(lce. Val ue):

@ In the language mappings unaffected by this change - C++98, Java Compat and Objective-C - Val ue and Obj ect are mapped to the same

native class.

Moreover, an operation on a Slice class is no longer mapped to an abstract method on the corresponding native class: the Slice compiler generates
instead a separate skeleton class (typically with a Di sp suffix) with the mapped method.

In a similar fashion, the mapped class for a Slice class that implements an interface no longer implements anything related to this interface. The Slice
compiler generates instead a separate, independent skeleton class that implements the mapped interface.

Interface Operation Parameters

(Affects all language mappings except: C++98, Java Compat, Objective-C)

In Ice 3.6 and prior releases, you could use an interface as the type for an operation parameter, for example:

Slice

nodul e M
{
interface Marker
{
string print();
b
interface Receiver
{
Mar ker op(Marker x); // Marker not Marker*, i.e. pass-by-val ue
I
class A inplenments Marker
{
string nsg;
I

3

This way, only instances of Slice classes that implement this interface would be accepted as a parameter to this operation.

With Ice 3.7, the Slice definitions above remain valid, but the parameters are now mapped like Val ues. For example, the Recei ver interface is mapped
to the following proxy and skeleton classes in C#:

C#

/] Proxy

public interface ReceiverPrx : Ice.ObjectPrx

{ I ce. Val ue op(lce.Value x, |ce.Qptional Context context = new |ce. Optional Context());
}

/'l Skel eton

public abstract class ReceiverDisp_ : lce.(bjectlnpl, Receiver

{ public abstract Ice.Value op(lce.Value x, Ice.Current current = null);

}

@ In the unusual situation where you need to send an interface "instance" by value, where the value carries only the interface's type id, each
language mapping provides a new helper class for this purpose named | nt er f aceByVal ue.

Back to Top

Removed APIs

The following APIs were removed in this release:

Interface | ce: : Connecti onCal | back (replaced by | ce: : Hear t beat Cal | back and | ce: : O oseCal | back)

Operation | ce: : Connecti on: : set Cal | back (replaced by the set Cl oseCal | back and set Hear t beat Cal | back operations)
Exception | ce: : NoObj ect Fact or yExcept i on (replaced by | ce: : NoVal ueFact or yExcept i on)

Exception | ce: : For cedC oseConnect i onExcepti on (replaced by | ce: : Connect i onManual | yO osedExcept i on)

Class | ce:: UnknownSl i cedObj ect (replaced by I ce: : UnknownSl i cedVal ue)

Back to Top

Deprecated APIs

This section describes the APIs that are deprecated in this Ice release, and will be removed in a future release. If your application uses one or more of the
APIs listed below, we recommend updating it as soon as possible.

Operations on Classes

Operations on Slice classes are now deprecated: when feasible, you should convert these classes to interfaces (with only operations and no data
members) or to classes without operations. If you need to keep classes with operations for interoperability with older applications, the global metadata
directive suppr ess-war ni ng: depr ecat ed allows you to compile your Slice files without warnings.

Likewise, having a Slice class implement one or more interfaces is now deprecated.

@ Local classes with operations are not deprecated. Such local classes are used by some Ice APIs, such as | ce: : Endpoi nt | nf o.

Object Factories

Object factories are now referred as value factories following the deprecation of classes with operations. As a result, the following | ce: : Conmruni cat or o
perations have been deprecated:

® Communi cat or: : addCbj ect Factory
® Communi cator:: findObj ect Factory

You should now use the Val ueFact or yManager interface returned by Conmuni cat or : : get Val ueFact or yManager to manage value factories.

Exception i ce_nane Method

The i ce_nane method for Ice exceptions has been deprecated in the various language mappings. It has been replaced by a new i ce_i d method.

Thread Hook in Python and C#

The t hr eadHook member of I ni ti al i zat i onDat a is deprecated. The new members t hr eadSt art and t hr eadSt op can be set to callable objects
(Python) or Syst em Act i on delegates (C#).

Batch Request Interceptor in Python

The | ce. Bat chRequest | nt er cept or class is deprecated. The bat chRequest | nt er cept or member of I ni ti al i zati onDat a can be setto a
callable object.

IcePatch2

IcePatch2 and IceGrid's distribution mechanism (based on IcePatch2) are now deprecated.

Back to Top

https://doc.zeroc.com/display/IceMatlab/Slice+Metadata+Directives

	Upgrading your Application from Ice 3.6

