
Using the Windows Binary Distributions
This page provides important information for users of the Ice binary distributions on Windows platforms.

On this page:

Overview of the Ice Binary Distributions for Windows
NuGet Package Installation

Adding a NuGet Package to a Visual Studio Project
ZeroC Symbol Server
Debug Symbols and Stack Traces for C++ Applications

Using the NuGet Packages
Information for C++ Developers
Information for C++/CX UWP Developers
Information for C# and .NET Developers

Using the Ice MSI Installation
Information for PHP Developers
Configuration Files for IceGrid and Glacier2 Services
Starting IceGrid GUI on Windows
Unattended Installation
Registry Key

Using the Sample Programs on Windows

Overview of the Ice Binary Distributions for Windows
Ice 3.7 provides the following binary distributions for Windows:

A traditional Windows installer file, ice-3.7.0.msi
Several packages: zeroc.ice.v100, NuGet zeroc.ice.v120, zeroc.ice.v140, zeroc.ice.v141, zeroc.ice.uwp.v140, zeroc.ice.uwp.v141 and zeroc.ice.
net

The table below shows which distribution(s) you should install depending on your needs.

Activity Compiler or
Environment

Distribution
to Install

Files Installed

Develop C++ desktop applications Visual Studio
2010

Visual Studio
2013

Visual Studio
2015

Visual Studio
2017

zeroc.ice.v100

zeroc.ice.v120

zeroc.ice.v140

zeroc.ice.v141

The complete Ice C++ SDK for the selected compiler, with x86, x64, Debug and Release
binaries

All Slice compilers (slice2cpp, slice2cs, slice2java, etc.)

All Ice services (Glacier2, IceBridge, IceGrid, IcePatch2, IceStorm), and the associated
command-line utility tools (icegridadmin, icestormadmin, etc.)

Develop C++/CX UWP applications Visual Studio
2015

Visual Studio
2017

zeroc.ice.uwp.
v140

zeroc.ice.uwp.
v141

The complete Ice C++/CX SDK for the selected compiler, with x86, x64, Debug and
Release binaries

slice2cpp, slice2html

Develop C# or other .NET
applications

Visual Studio
2013, 2015 or
2017

zeroc.ice.net The complete Ice C# /.NET SDK

slice2cs, slice2html

Develop PHP applications PHP 7.1 Ice MSI The IceGrid GUI admin tool

All the Slice compilers (slice2java, slice2php, slice2html, etc.)

All the Ice Slice files

The Ice for PHP extension (for PHP 7.1)

All Ice services the associated (Glacier2, IceBridge, IceGrid, IcePatch2, IceStorm), and
command-line utility tools (icegridadmin, icestormadmin, etc.) (x64 Release only)

Develop Java applications JDK 8 Ice MSI

Administer IceGrid deployments Ice MSI

Deploy Ice services (Glacier2,
IceBridge, IceGrid, IcePatch2,
IceStorm)

 Ice MSI

Visual Studio

If you are developing applications with Visual Studio, you should also install the .Ice Builder for Visual Studio

With Visual Studio 2010 and Visual Studio 2017, you can only build with MSBuild from the command-line. The integration with the Visual Studio
2017 IDE is not yet functional.

https://www.nuget.org/
https://github.com/zeroc-ice/ice-builder-visualstudio/blob/master/README.md

1.
2.

3.

NuGet Package Installation

Adding a NuGet Package to a Visual Studio Project

Follow these steps to install Ice NuGet packages on your computer.

Open the Visual Studio Solution that contains the project you want to work on.
Open the NuGet Package Manager from the Tools menu:

On the next screen, select the zeroc.ice package you want to install, then select the project in which you want to install it, and finally click the
Install button.
NuGet will install this package in the folder next to your Solution file and configure the selected project to use it.packages

C++ run time

Ice MSI
All the C++ binaries installed by the Ice MSI are x64 Release, built with Visual Studio 2015. The Ice MSI installs the corresponding Visual C++
run time on your computer: you don't need to install Visual Studio or any Visual Studio Redistributable to use this distribution.

Ice NuGet packages
The Ice NuGet packages do not install the Visual C++ run time on your computer.

Back to Top ^

ZeroC Symbol Server

The ZeroC symbol server, , provides debug symbols for the C++ binaries included in the NuGet packages published by ZeroC.https://symbols.zeroc.com

To use this symbol server, add its URL on Visual Studio's Symbols page:

The screenshot above shows a solution with a C++ project. The process is the same with UWP and .NET projects.

https://symbols.zeroc.com/

1.

2.

3.

4.

Back to Top ^

Debug Symbols and Stack Traces for C++ Applications

Ice C++ applications can print stack traces for Ice exceptions, which can be very helpful for debugging. In order to get usable stack traces, you need to
install the corresponding Ice debug symbols in a local folder, and configure your system to look for debug symbols in this folder. We recommend you do
the following:

Download and install the .Debugging Tools for Windows

Add these tools to your PATH, for example:

set PATH=C:\Program Files (x86)\Windows Kits\10\Debuggers\x64;%PATH%

Download the debug symbols of your Ice NuGet package(s) to your local folder, with the tool included in the Debugging SymbolCache symchk
Tools for Windows. For example:

symchk /v /r packages\zeroc.ice.v140.3.7.0\build\native\bin* /s SRV*%TEMP%\SymbolCache*https://symbols.
zeroc.com

(remove the option for a quieter output)/v
This copies debug symbols for all the binaries in the selected NuGet packages to .%TEMP%\SymbolCache %TEMP%\SymbolCache is also the
default symbol cache folder for Visual Studio. This folder can cache symbols for any number of NuGet packages, in particular the debug symbols
of different versions of the same package.

Check "Enable source server support" in Visual Studio's debugging options to allow Visual Studio to fetch the corresponding source code.

The and NuGet packages include debug symbols (files) and don't need this Symbol Server.zeroc.ice.net zeroc.ice.uwp pdb

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/

3.

4. Set the environment variable _NT_SYMBOL_PATH to point to this local folder, for example:SymbolCache

set _NT_SYMBOL_PATH=%TEMP%\SymbolCache

Back to Top ^

Using the NuGet Packages

Information for C++ Developers

Once you've installed the Ice NuGet package into a C++ project as shown earlier, this project will find automatically all Ice C++ header files and import
libraries. If you also enable the Ice Builder for Visual Studio in this C++ project, the Ice Builder will take care of compiling the Slice files in this project with
slice2cpp (it uses the slice2cpp installed from the NuGet package).

Moreover, the Debugger Path is set and you can run your application directly from Visual Studio - there is no need to set any additional environment
variables.

Occasionally, you may want to run your application outside Visual Studio, or use one of the Ice services or Ice tools included installed by the NuGet
package. To do so, add the NuGet package's folder to your .bin PATH

Back to Top ^

Compiler Settings

Your application must be compiled with the same flags as the Ice libraries:

Release: /MD /EHsc
Debug: /MDd /EHsc

Add to the project preprocessor definitions if you want to use the . Without this definition, you will use the ICE_CPP11_MAPPING Ice C++11 mapping Ice
.C++98 mapping

You don't need to list Ice import libraries such as when linking with Ice libraries. See for additional iceD.lib Linking with C++ Libraries on Windows
details.

Back to Top ^

NuGet Package Details

The following table shows the Ice C++ NuGet package layout:

Folder Description

build\native\include C++ header files

build\native\lib\<Platform>\<Configuration> C++ import libraries

build\native\bin\<Platform>\<Configuration> C++ binaries (excluding Slice compilers)

tools slice2xxx compilers

build\native Visual Studio property and target files

The zeroc.ice.v<version> package is installed in the folder next to your Visual Studio solution file. For example, a Visual Studio 2017 packages
solution would have a structure similar to the following:

C:\MyApplication\MyApplication.sln
C:\MyApplication\MyApplication\MyApplication.vcxproj
C:\MyApplication\packages\zeroc.ice.v141.3.7.0

With this example, you could set your PATH to:

set PATH=C:\MyApplication\packages\zeroc.ice.v141.3.7.0\build\native\x64\Release;%PATH%

https://doc.zeroc.com/pages/viewpage.action?pageId=18262603
https://doc.zeroc.com/pages/viewpage.action?pageId=18262659
https://doc.zeroc.com/pages/viewpage.action?pageId=18262659
https://doc.zeroc.com/display/IceMatlab/New+Features+in+Ice+3.7#NewFeaturesinIce3.7-LinkingwithC++LibrariesonWindows

slice Slice files

Installing the NuGet package imports the property and target files from the folder into the project. The property file defines properties used build\native
by the Ice Builder for Visual Studio; you can also use them in custom build steps.

The table below presents these properties:

Name Value Description

IceVersion 3.7.0 Ice string version

IceIntVersion 30700 Ice version as a numeric value

IceVersionMM 3.7 Major Minor version

IceSoVersion 37 Version used in dynamic libraries

IceNugetPackageVersion 3.7.0 NuGet package version

IceHome $(MSBuildThisFileDirectory)..\.. Full path to the package root folder

IceToolsPath $(IceHome)\tools Full path to the folder of the Slice compilers

The targets file configures the C++ Additional Include Directories and Additional Library Directories to locate C++ headers and import libraries in the
package's include and lib folders.

Back to Top ^

Information for C++/CX UWP Developers

Once you've installed the Ice NuGet package into a C++/CX project as shown earlier, this project will find automatically all Ice C++ header files and static
libraries. If you also enable the Ice Builder for Visual Studio in this C++ project, the Ice Builder will take care of compiling the Slice files in this project with
slice2cpp (it uses the slice2cpp installed from the NuGet package).

Compiler Settings

Ice for C++/CX UWP supports only the new and requires that you add to your project's preprocessor definitions.C++11 mapping ICE_CPP11_MAPPING

The Release versions of the Ice libraries are compiled with to select the multi-threaded Visual C++ run-time library, while the Debug versions use /MD /MDd
 to select the debug multi-threaded run-time library. Both versions of the Ice libraries are compiled with to select an ./EHsc exception handling model

Your application must be compiled with the same flags as the Ice libraries:

Release: /MD /EHsc /DICE_CPP11_MAPPING
Debug: /MDd /EHsc /DICE_CPP11_MAPPING

You don't need to list Ice import libraries such as when linking with Ice libraries. See for additional iceD.lib Linking with C++ Libraries on Windows
details.

Back to Top ^

C++/CX SDK Nuget Package Details

The following table shows the Ice C++/CX NuGet package layout:

The NuGet package automatically adds its folder to the build\native\lib\<Platform>\<Configuration> Additional Library
, where is the selected platform and is when the MSBuild property Directories <Platform> <Configuration> Debug UseDebugLibrari

 is . Otherwise, is . Projects created with recent versions of Visual Studio set to es true <Configuration> Release UseDebugLibraries
true automatically for debug projects (meaning projects that link with the Visual C++ debug run-time libraries); if you created your project with an
older version of Visual Studio, you need to edit the project file and set to for your debug configurations, for UseDebugLibraries true
example:

<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
 ...
 <UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>

https://doc.zeroc.com/pages/viewpage.action?pageId=18262602
http://msdn.microsoft.com/en-us/library/1deeycx5(v=vs.110).aspx
https://doc.zeroc.com/display/IceMatlab/New+Features+in+Ice+3.7#NewFeaturesinIce3.7-LinkingwithC++LibrariesonWindows

Folder Description

build\native\include C++ header files

build\native\lib\<Platform>\<Configuration> C++ static libraries

tools slice2cpp and slice2html

build\native Visual Studio property and target files

slice Slice files

Installing the NuGet package imports the property and target files from the folder into the project. The property file defines properties used build\native
by the Ice Builder for Visual Studio; you can also use them in custom build steps.

The table below presents these properties:

Name Value Description

IceVersion 3.7.0 Ice string version

IceIntVersion 30700 Ice version as numeric value

IceVersionMM 3.7 Major Minor version

IceSoVersion 37 Version used in dynamic libraries

IceNugetPackageVersion 3.7.0 NuGet package numeric version

IceHome $(MSBuildThisFileDirectory)..\.. Full path to the package root folder

IceToolsPath $(IceHome)\tools Full path to the folder containing the Slice compilers.

The targets file configures the C++ Additional Include Directories and Additional Library Directories to locate C++ headers and import libraries in the
package's and folders.include lib

Back to Top ^

Information for C# and .NET Developers

Once you've installed the Ice NuGet package into a C# or .NET project as shown earlier, this project will gain a reference to the Ice assembly. If you also
enable the Ice Builder for Visual Studio in this C# or .NET project, the Ice Builder will take care of compiling the Slice files in this project with slice2cs (it
uses the slice2cs compiler installed from the NuGet package). The Ice Builder also simplifies the management of references to Ice assemblies included in
the NuGet package.

You can develop Ice applications with any .NET CLR language, however, only generates C# code. If you are developing in another CLR slice2cs
language, you can put the generated code in a library and reference this library from your project.

Back to Top ^

.NET SDK NuGet Package Details

The following table shows the Ice for .NET (zeroc.ice.net) NuGet package layout:

Folder Description

lib .NET assemblies

tools slice2cs, slice2html, iceboxnet and bzip2 dll

build Visual Studio property file

slice Slice files

Installing the NuGet package imports the property file from the folder into the project. The property file defines properties used by the Ice Builder for build
Visual Studio; you can also use them in custom build steps.

The table below presents these properties:

Name Value Description

IceVersion 3.7 Ice string version

IceIntVersion 30700 Ice version as a numeric value

IceVersionMM 3.7 Major Minor version

IceSoVersion 37 Version used in dynamic libraries

IceNugetPackageVersion 3.7.0 Nuget package numeric version

IceHome $(MSBuildThisFileDirectory)..\.. Full path to the package root folder

IceToolsPath $(IceHome)\tools Full path to the folder containing the Slice compilers.

Back to Top ^

Using the Ice MSI Installation

Information for PHP Developers

The MSI distribution includes all the components required to develop Ice for PHP applications on Windows, including PHP and Slice source files, the
slice2php compiler and the Ice for PHP extension. The MSI installer detects the PHP installations on your computer and allows you to select where to
install the Ice for PHP extension:

For each PHP version you select, the installer copies the Ice for PHP extension to the folder and updates the configuration file to extensions php.ini
load the extension; it also modifies to include the Ice for PHP folder. The following lines are added to :include_path php.ini

[PHP_ZEROC_ICE]
extension=php_ice_nts.dll
include_path=${include_path}";C:\Program Files\ZeroC\Ice-3.7.0\php"

The Ice MSI includes both x86 and x64 versions of the Ice for PHP extension built with the PHP 7.1 NTS libraries.

Back to Top ^

Configuration Files for IceGrid and Glacier2 Services

The main Ice for .NET assembly () included in uses unmanaged code. If you require only managed code, you can ice.dll zeroc.ice.net
clone the and build Ice for .NET in a purely managed version.ice repository

https://github.com/zeroc-ice/ice

The subdirectory of the Ice MSI installation includes sample configuration files for the Glacier2 router, IceGrid node, and IceGrid registry. These config
files provide a good starting point on which to base your own configurations, and they contain comments that describe the settings in detail.

The provides more information on installing and running the IceGrid registry, IceGrid node, and Glacier2 router as Windows services.Ice manual

Back to Top ^

Starting IceGrid GUI on Windows

You can launch IceGrid GUI using the shortcut that the Ice MSI installer created in your Start menu as . IceGrid GUI is a Java 8-based IceGrid GUI
application.

Back to Top ^

Unattended Installation

The Ice MSI installer supports unattended installation. For example, in an administrative command window you can run:

start /wait Ice-3.7.0.msi /qn /l*v install.log

Windows may prompt you to confirm the installation, otherwise the installer runs using its default configuration (i.e., default installation folder, adds the
installation's folder to the system PATH, and installs the PHP extension for the PHP installations it detects) but without any user interface. The installer bin
will create a log of its activities in the file .install.log

Back to Top ^

Registry Key

The Ice MSI installer adds information to the Windows registry to indicate where it was installed. Developers can use this information to locate the Ice files
in their applications.

The registration key used by this installer is:

HKEY_LOCAL_MACHINE\SOFTWARE\ZeroC\Ice 3.7.0

The install location is stored as a string value named .InstallDir

Back to Top ^

Using the Sample Programs on Windows
The Ice sample programs are provided in . You can browse this repository to see build and usage instructions for all ice-demos GitHub repository
supported programming languages.

Clone the ice-demos repository as follows:

git clone -b 3.7 https://github.com/zeroc-ice/ice-demos.git
cd ice-demos

Back to Top ^

https://doc.zeroc.com/pages/viewpage.action?pageId=18263632
https://github.com/zeroc-ice/ice-demos

	Using the Windows Binary Distributions

