
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.

3.
4.

Using a Freeze Map in the File System Server
We can use a Freeze map to add persistence to the file system server, and we'll present implementations in both C++ and Java. However, a Freeze

 is often a better choice for applications (such as the file system server) in which the persistent value is an Ice object.evictor

In general, incorporating a Freeze map into your application requires the following steps:

Evaluate your existing Slice definitions for suitable key and value types.
If no suitable key or value types are found, define new (possibly derived) types that capture your persistent state requirements. Consider
placing these definitions in a separate file: these types are only used by the server for persistence, and therefore do not need to appear in
the "public" definitions required by clients. Also consider placing your persistent types in a separate module to avoid name clashes.
Generate a Freeze map for your persistent types using the Freeze compiler.
Use the Freeze map in your operation implementations.

Choosing Key and Value Types for the File System
Our goal is to implement the file system using Freeze maps for all persistent storage, including files and their contents. There are various options for
how to implement the server. For this example, the server is stateless; whenever a client invokes an operation, the server accesses the database to
satisfy the request. Implementing the server in this way has the advantage that it scales very well: we do not need a separate servant for each node;
instead two , one for directories and one for files, are sufficient. This keeps the memory requirements of the server to a minimum and default servants
also allows us to rely on the database for transactions and locking. (This is a very common implementation technique for servers that act as a front
end to a database: the server is a simple facade that implements each operation by accessing the database.)

Our first step is to select the Slice types we will use for the key and value types for our maps. For each file, we need to store the name of the file, its
parent directory, and the contents of the file. For directories, we also store the name and parent directory, as well as a dictionary that keeps track of
the subdirectories and files in that directory. This leads to Slice definitions (in file) as follows:FilesystemDB.ice

Slice

#include <Filesystem.ice>
#include <Ice/Identity.ice>

module FilesystemDB {
 struct FileEntry {
 string name;
 Ice::Identity parent;
 Filesystem::Lines text;
 };

 dictionary<string, Filesystem::NodeDesc> StringNodeDescDict;

 struct DirectoryEntry {
 string name;
 Ice::Identity parent;
 StringNodeDescDict nodes;
 };
};

Note that the definitions are placed into a separate module, so they do not affect the existing definitions of the non-persistent version of the
application. For reference, here is the definition of once more:NodeDesc

https://doc.zeroc.com/display/Ice35/Freeze+Evictors
https://doc.zeroc.com/display/Ice35/Freeze+Evictors
https://doc.zeroc.com/display/Ice35/Default+Servants

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Slice

module Filesystem {
 // ...

 enum NodeType { DirType, FileType };

 struct NodeDesc {
 string name;
 NodeType type;
 Node* proxy;
 };

 // ...
};

To store the persistent state for the file system, we use two Freeze maps: one map for files and one map for directories. For files, we map the identity
of the file to its corresponding structure and, similarly, for directories, we map the identity of the directory to its corresponding FileEntry Directory

 structure.Entry

When a request arrives from a client, the object identity is available in the server. The server uses the identity to retrieve the state of the target node
for the request from the database and act on that state accordingly.

Topics

Adding a Freeze Map to the C++ File System Server
Adding a Freeze Map to the Java File System Server

See Also

Default Servants
Freeze Evictors

https://doc.zeroc.com/pages/viewpage.action?pageId=14680494
https://doc.zeroc.com/display/Ice35/Adding+a+Freeze+Map+to+the+Java+File+System+Server
https://doc.zeroc.com/display/Ice35/Default+Servants
https://doc.zeroc.com/display/Ice35/Freeze+Evictors

	Using a Freeze Map in the File System Server

