
Objective-C Mapping for Interfaces

The mapping of Slice revolves around the idea that, to invoke a remote operation, you call a member function on a local class instance that interfaces
represents the remote object. This makes the mapping easy and intuitive to use because, for all intents and purposes (apart from error semantics), making
a remote procedure call is no different from making a local procedure call.

On this page:

Proxy Classes and Proxy Protocols in Objective-C
Interface Inheritance in Objective-C
Proxy Instantiation and Casting in Objective-C

Using a Checked Cast in Objective-C
Using an Unchecked Cast in Objective-C

Using Proxy Methods in Objective-C
Object Identity and Proxy Comparison in Objective-C

Proxy Classes and Proxy Protocols in Objective-C
On the client side, interfaces map to a protocol with member functions that correspond to the operations on those interfaces. Consider the following simple
interface:

Slice

["objc:prefix:EX"]
module Example
{
 interface Simple
 {
 void op();
 }
}

The Slice compiler generates the following definitions for use by the client:

Objective-C

@interface EXSimplePrx : ICEObjectPrx
// Mapping-internal methods here...
@end

@protocol EXSimplePrx <ICEObjectPrx>
-(void) op;
-(void) op:(ICEContext *)context;
@end;

As you can see, the compiler generates a proxy protocol and a proxy class . In general, the generated name for both EXSimplePrx EXSimplePrx
protocol and class is .Prx<module-prefix><interface-name>

In the client's address space, an instance of is the local ambassador for a remote instance of the interface in a server and is EXSimplePrx Simple
known as a . All the details about the server-side object, such as its address, what protocol to use, and its object identity are proxy class instance
encapsulated in that instance.

Note that derives from , and that adopts the protocol. This reflects the fact that all Slice EXSimplePrx ICEObjectPrx EXSimplePrx ICEObjectPrx
interfaces implicitly derive from . For each operation in the interface, the proxy protocol has two methods whose name is derived from the Ice::Object
operation. For the preceding example, we find that the operation is mapped to two methods, and .op op op:

The second method has a trailing parameter of type . This parameter is for use by the Ice run time to store information about how to deliver a ICEContext
request; normally, you do not need to supply a value here and can pretend that the trailing parameter does not exist. (We examine the ICEContext
parameter in detail in . The parameter is also used by .)Request Contexts IceStorm

Back to Top ^

https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Exceptions
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/IceStorm

Interface Inheritance in Objective-C
Inheritance relationships among Slice interfaces are maintained in the generated Objective-C code. For example:

Slice

["objc:prefix:EX"]
module Example
{
 interface A { ... }
 interface B { ... }
 interface C extends A, B { ... }
}

The generated code reflects the inheritance hierarchy:

Objective-C

@interface EXCPrx : ICEObjectPrx <EXCPrx>
 ...
@end

@protocol EXCPrx <EXAPrx, EXBPrx>
@end

Given a proxy for , a client can invoke any operation defined for interface , as well as any operation inherited from 's base interfaces.C C C

Back to Top ^

Proxy Instantiation and Casting in Objective-C
Client-side application code never manipulates proxy class instances directly. In fact, you are not allowed to instantiate a proxy class directly. Instead,
proxy instances are always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly.

Proxies are immutable: once the run time has instantiated a proxy, that proxy continues to denote the same remote object and cannot be changed. ICEObj
 implements . However, calling returns a reference on the target proxy.ectPrx NSCopying copy

Proxies are always passed and returned as type . For example, for the preceding interface, id< Prx><module-prefix><interface-name> Simple
the proxy type is .id<EXSimplePrx>

The base class provides class methods that allow you to cast a proxy from one type to another, as described below.ICEObjectPrx

Back to Top ^

Using a Checked Cast in Objective-C

A tests whether the object denoted by a proxy implements the specified interface:checkedCast

Objective-C

+(id) checkedCast:(id<ICEObjectPrx>)proxy;

If so, the cast returns a proxy to the specified interface; otherwise, if the object denoted by the proxy does not implement the specified interface, the cast
returns . Checked casts are typically used to safely down-cast a proxy to a more derived interface. For example, assuming we have Slice interfaces nil Ba

 and , you can write the following:se Derived

Objective-C

id<EXBasePrx> base = ...; // Initialize base proxy
id<EXDerivedPrx> derived = [EXDerivedPrx checkedCast:base];
if(derived != nil)
{
 // base implements run-time type Derived
 // use derived...
}
else
{
 // Base has some other, unrelated type
}

The expression [tests whether points at an object of type (or an object with a type that is derived EXDerivedPrx checkedCast:base] base Derived
from). If so, the cast succeeds and is set to point at the same object as . Otherwise, the cast fails and is set to . Derived derived base derived nil
(Proxies that "point nowhere" are represented by .)nil

The message effectively asks the server "is the object denoted by this proxy of type ?" The reply from the server is communicated to the Derived
application code in form of a successful (non-) or unsuccessful () result. Sending a remote message is necessary because, as a rule, there is no nil nil
way for the client to find out what the actual run-time type of a proxy is without confirmation from the server. (For example, the server may replace the
implementation of the object for an existing proxy with a more derived one.) This means that you have to be prepared for a to fail. For checkedCast
example, if the server is not running, you will receive an ; if the server is running, but the object denoted by the ICEConnectionRefusedException
proxy no longer exists, you will receive an .ICEObjectNotExistException

Back to Top ^

Using an Unchecked Cast in Objective-C

In some cases, it is known that an object supports a more derived interface than the static type of its proxy. For such cases, you can use an unchecked
down-cast:

Objective-C

+(id) uncheckedCast:(id<ICEObjectPrx>)proxy;

Here is an example:

Objective-C

id<EXBasePrx> base;
base = ...; // Initialize base to point at a Derived
id<EXDerivedPrx> derived = [EXDerivedPrx uncheckedCast:base];
// Use derived...

An provides a down-cast consulting the server as to the actual run-time type of the object. You should use an uncheckedCast without uncheckedCast
only if you are certain that the proxy indeed supports the more derived type: an , as the name implies, is not checked in any way; it does uncheckedCast
not contact the object in the server and, if the proxy does not support the specified interface, the cast does not return null. If you use the proxy resulting
from an incorrect to invoke an operation, the behavior is undefined. Most likely, you will receive an uncheckedCast ICEOperationNotExistException
, but, depending on the circumstances, the Ice run time may also report an exception indicating that unmarshaling has failed, or even silently return
garbage results.

Despite its dangers, is still useful because it avoids the cost of sending a message to the server. And, particularly during , it uncheckedCast initialization
is common to receive a proxy of type , but with a known run-time type. In such cases, an saves the overhead of id<ICEObjectPrx> uncheckedCast
sending a remote message.

Note that an is the same as an ordinary cast. The following is incorrect and has undefined behavior:uncheckedCast not

Calling on a proxy that is already of the desired proxy type returns immediately that proxy. Otherwise, always checkedCast checkedCast
calls on the target object, and upon success, creates a new instance of the desired proxy class.ice_isA

https://doc.zeroc.com/display/IceMatlab/Object+Incarnation+in+Objective-C#ObjectIncarnationinObjectiveC-proxies

Objective-C

id<EXDerivedPrx> derived = (id<EXDerivedPrx>)base; // Wrong!

When not using ARC, both and call on the proxy they return so, if you want to prevent the proxy from checkedCast uncheckedCast autorelease
being deallocated once the enclosing autorelease pool is drained, you must call on the returned proxy.retain

Back to Top ^

Using Proxy Methods in Objective-C
The provides a variety of . Since proxies are immutable, each of these "factory methods" returns a copy ICEObjectPrx methods for customizing a proxy
of the original proxy that contains the desired modification. For example, you can obtain a proxy configured with a ten-second invocation timeout as shown
below:

Objective-C

id<ICEObjectPrx> proxy = [communicator stringToProxy:...];
proxy = [proxy ice_invocationTimeout:10000];

A factory method returns a new (autoreleased) proxy object if the requested modification differs from the current proxy, otherwise it returns the original
proxy. The returned proxy is always of the same type as the source proxy, except for the factory methods and . Calls to either ice_facet ice_identity
of these methods may produce a proxy for an object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an
appropriate type.

Back to Top ^

Object Identity and Proxy Comparison in Objective-C
Proxy objects support comparison with . Note that uses of the information in a proxy for the comparison. This means that not only isEqual isEqual all
the object identity must match for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be the
same as well. In other words, comparison with tests for proxy identity, not object identity. A common mistake is to write code along the following isEqual
lines:

Objective-C

id<ICEObjectPrx> p1 = ...; // Get a proxy...
id<ICEObjectPrx> p2 = ...; // Get another proxy...

if(![p1 isEqual:p2])
{
 // p1 and p2 denote different objects // WRONG!
}
else
{
 // p1 and p2 denote the same object // Correct
}

Even though and differ, they may denote the same Ice object. This can happen if, for example, and embed the same object identity, but use a p1 p2 p1 p2
different protocol to contact the target object. Similarly, the protocols might be the same, but could denote different endpoints (because a single Ice object
can be contacted via several different transport endpoints). In other words, if two proxies compare equal with , we know that the two proxies isEqual
denote the same object (because they are identical in all respects); however, if two proxies compare unequal with , we know absolutely nothing: isEqual
the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use additional methods provided by proxies:

https://doc.zeroc.com/display/IceMatlab/Proxy+Methods

Objective-C

@protocol ICEObjectPrx <NSObject, NSCopying>
// ...
-(NSComparisonResult) compareIdentity:(id<ICEObjectPrx>)p;
-(NSComparisonResult) compareIdentityAndFacet:(id<ICEObjectPrx>)p;
@end

The method compares the object identities embedded in two proxies while ignoring other information, such as facet and transport compareIdentity
information. To include the in the comparison, use instead.facet name compareIdentityAndFacet

compareIdentity and allow you to correctly compare proxies for object identity. The example below demonstrates how compareIdentityAndFacet
to use :compareIdentity

Objective-C

id<ICEObjectPrx> p1 = ...; // Get a proxy...
id<ICEObjectPrx> p2 = ...; // Get another proxy...

if([p1 compareIdentity:p2] != NSOrderedSame)
{
 // p1 and p2 denote different objects // Correct
}
else
{
 // p1 and p2 denote the same object // Correct
}

Back to Top ^

See Also

Interfaces, Operations, and Exceptions
Proxies for Ice Objects
Objective-C Mapping for Operations
Operations on Object
Proxy Methods
Versioning
IceStorm

https://doc.zeroc.com/display/IceMatlab/Versioning
https://doc.zeroc.com/display/IceMatlab/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/IceMatlab/Proxies+for+Ice+Objects
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Operations+on+Object
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Versioning
https://doc.zeroc.com/display/IceMatlab/IceStorm
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Exceptions
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Operations

	Objective-C Mapping for Interfaces

