
Asynchronous Method Invocation (AMI) in Java

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI supports both
oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a client issues an AMI
request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the request for later delivery. The
application can then continue its activities and poll or wait for completion of the invocation, or receive a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

On this page:

Basic Asynchronous API in Java
Asynchronous Proxy Methods in Java
Asynchronous Exception Semantics in Java

InvocationFuture Class in Java
Polling for Completion in Java
Asynchronous Oneway Invocations in Java
Flow Control in Java
Asynchronous Batch Requests in Java
Canceling Asynchronous Requests in Java
Concurrency Semantics for AMI in Java

Basic Asynchronous API in Java
Consider the following simple Slice definition:

Slice

module Demo
{
 interface Employees
 {
 string getName(int number);
 }
}

Asynchronous Proxy Methods in Java

In addition to the synchronous proxy methods, generates the following asynchronous proxy methods:slice2java

Java

public interface EmployeesPrx extends com.zeroc.Ice.ObjectPrx
{
 // ...

 java.util.concurrent.CompletableFuture<java.lang.String> getNameAsync(int number);
 java.util.concurrent.CompletableFuture<java.lang.String> getNameAsync(int number, java.util.Map<String,
String> context);
}

As you can see, the Slice operation generates a method, along with an overload so that you can pass a .getName getNameAsync per-invocation context

The method sends (or queues) an invocation of . This method does not block the calling thread. It returns an instance of getNameAsync getName java.
 that you can use in a number of ways, including blocking to obtain the result, configuring an action to be util.concurrent.CompletableFuture

executed when the result becomes available, and canceling the invocation.

Here's an example that calls :getNameAsync

https://doc.zeroc.com/display/IceBeta/Customizing+the+Java+Mapping
https://doc.zeroc.com/display/IceBeta/slice2java+Command-Line+Options
https://doc.zeroc.com/display/IceBeta/Request+Contexts

Java

EmployeesPrx e = ...;
java.util.concurrent.CompletableFuture<String> f = e.getNameAsync(99);

// Continue to do other things here...

String name = f.join();

Because does not block, the calling thread can do other things while the operation is in progress.getNameAsync

An asynchronous proxy method uses the same parameter mapping as for ; the only difference is that the result (if any) is returned synchronous operations
in a . An operation that returns no values maps to an asynchronous proxy method that returns . For CompletableFuture CompletableFuture<Void>
example, consider the following operation:

Slice

interface Example
{
 double op(int inp1, string inp2, out bool outp1, out long outp2);
}

The generated code looks like this:

Java

public interface Example
{
 public static class OpResult
 {
 public OpResult();
 public OpResult(double returnValue, boolean outp1, long outp2);

 public double returnValue;
 public boolean outp1;
 public long outp2;
 }

 ...
}

public interface ExamplePrx extends com.zeroc.Ice.ObjectPrx
{
 java.util.concurrent.CompletableFuture<Example.OpResult> opAsync(int inp1, String inp2);
 java.util.concurrent.CompletableFuture<Example.OpResult> opAsync(int inp1, String inp2, java.util.
Map<String, String> context);

 ...
}

Now let's call to demonstrate one way of asynchronously executing an action when the invocation completes:whenComplete

https://doc.zeroc.com/display/IceBeta/Java+Mapping+for+Operations

Java

ExamplePrx e = ...;
e.opAsync(5, "demo").whenComplete((result, ex) ->
 {
 if(ex != null)
 {
 // handle exception...
 }
 else
 {
 System.out.println("returnValue = " + result.returnValue);
 System.out.println("outp1 = " + result.outp1);
 System.out.println("outp2 = " + result.outp2);
 }
 });

Back to Top ^

Asynchronous Exception Semantics in Java

If an invocation raises an exception, the exception can be obtained from the future in several ways:

Call on the future; raises with the actual exception available via get get CompletionException getCause()
Call on the future; raises with the actual exception available via join join ExecutionException getCause()
Use chaining methods such as , or to execute custom actionsexceptionally handle whenComplete

The exception is provided by the future, even if the actual error condition for the exception was encountered during the call to the method ("on opAsync
the way out"). The advantage of this behavior is that all exception handling is located with the code that handles the future (instead of being present twice,
once where the method is called, and again where the future is handled).opAsync

There are two exceptions to this rule:

if you destroy the communicator and then make an asynchronous invocation, the method throws opAsync CommunicatorDestroyedException
 directly.
a call to an function can throw . An function throws this exception if you call an operation that has a return Async TwowayOnlyException Async
value or out-parameters on a oneway proxy.

Back to Top ^

InvocationFuture Class in Java
The object that is returned by asynchronous proxy methods can be down-cast to when an application CompletableFuture InvocationFuture
requires more control over an invocation:

Java

package com.zeroc.Ice;

public class InvocationFuture<T> extends ...
{
 public Communicator getCommunicator();
 public Connection getConnection();
 public ObjectPrx getProxy();
 public String getOperation();

 public void waitForCompleted();

 public boolean isSent();
 public void waitForSent();
 public boolean sentSynchronously();

 public CompletableFuture<Boolean> whenSent(java.util.function.BiConsumer<Boolean, ? super Throwable>
action);
 public abstract CompletableFuture<Boolean> whenSentAsync(java.util.function.BiConsumer<Boolean, ? super
Throwable> action);
 public abstract CompletableFuture<Boolean> whenSentAsync(java.util.function.BiConsumer<Boolean, ? super
Throwable> action, Executor executor);
}

The methods have the following semantics:

Communicator getCommunicator()
This method returns the communicator that sent the invocation.

Connection getConnection()
This method returns the connection that was used for the invocation. Note that, for typical asynchronous proxy invocations, this method returns a
nil value because the possibility of automatic retries means the connection that is currently in use could change unexpectedly. The getConnecti

 method only returns a non-nil value when the future is obtained by calling on a object.on flushBatchRequestsAsync Connection

ObjectPrx getProxy()
This method returns the proxy that was used to call the asynchronous proxy method, or nil if the future was not obtained via an asynchronous
proxy invocation.

String getOperation()
This method returns the name of the operation.

void waitForCompleted()
This method blocks the caller until the result of an invocation becomes available. Upon return, the standard method CompletableFuture.

 returns true.isDone()

boolean isSent()
When you call an asynchronous proxy method, the Ice run time attempts to write the corresponding request to the client-side transport. If the
transport cannot accept the request, the Ice run time queues the request for later transmission. returns true if, at the time it is called, the isSent
request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still queued or an exception
occurred before the request could be sent, returns false.isSent

void waitForSent()
This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After retuwaitForSent
rns, returns true if the request was successfully written to the client-side transport, or false if an exception occurred. In the case of a isSent
failure, you can obtain the exception using the standard methods.CompletableFuture

boolean sentSynchronously()
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially queued, sentSy

 returns false (independent of whether the request is still in the queue or has since been written to the client-side transport).nchronously

CompletableFuture<Boolean> whenSent(BiConsumer<Boolean, ? super Throwable> action)
Configures an action to be executed when the request has been successfully written to the client-side transport. The arguments to the action are
a boolean indicating whether the request was sent synchronously (see above) and a . The exception sentSynchronously Throwable
argument will be null if the request was sent successfully. The returned stage is completed when the action returns. If the supplied action itself
encounters an exception, then the returned stage exceptionally completes with this exception unless this stage also completed exceptionally. If
the invocation is already sent at the time is called, the callback method is invoked recursively from the calling thread. Otherwise, the whenSent
callback method is invoked by an Ice thread (or by a if one is configured).dispatcher

CompletableFuture<Boolean> whenSentAsync(BiConsumer<Boolean, ? super Throwable> action)
Behaves like except the given action is executed asynchronously using this stage's default asynchronous execution facility.whenSent

https://doc.zeroc.com/display/IceBeta/Dispatching+Requests+to+User+Threads

CompletableFuture<Boolean> whenSentAsync(BiConsumer<Boolean, ? super Throwable> action, Executor executor)
Behaves like except the given action is executed using the supplied executor.whenSent

Due to limitations in Java's generic type system, a regular down-cast from to would cause a compiler CompletableFuture<T> InvocationFuture<T>
error, therefore Ice provides a helper method to perform the conversion for you:

Java

package com.zeroc.Ice;

public class Util
{
 static public InvocationFuture getInvocationFuture(java.util.concurrent.CompletableFuture f);

 ...
}

See below for sample code that uses this method.

Back to Top ^

Polling for Completion in Java
The methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the following InvocationFuture
simple interface to transfer files from client to server:

Slice

interface FileTransfer
{
 void send(int offset, ByteSeq bytes);
}

The client repeatedly calls to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit a file would be send
along the following lines:

Java

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;
int offset = 0;
while(!file.eof())
{
 byte[] bs;
 bs = file.read(chunkSize); // Read a chunk
 ft.send(offset, bs); // Send the chunk
 offset += bs.length;
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to receive the
data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time doing nothing — the
client does nothing while the server processes the data, and the server does nothing while it waits for the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

Java

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;
int offset = 0;

LinkedList<InvocationFuture<Void>> results = new LinkedList<InvocationFuture<Void>>();
int numRequests = 5;

while(!file.eof())
{
 byte[] bs;
 bs = file.read(chunkSize);

 // Send up to numRequests + 1 chunks asynchronously.
 CompletableFuture<Void> f = ft.sendAsync(offset, bs);
 offset += bs.length;

 // Wait until this request has been passed to the transport.
 InvocationFuture<Void> i = Util.getInvocationFuture(f);
 i.waitForSent();
 results.add(i);

 // Once there are more than numRequests, wait for the least
 // recent one to complete.
 while(results.size() > numRequests)
 {
 i = results.getFirst();
 results.removeFirst();
 i.join();
 }
}

// Wait for any remaining requests to complete.
while(results.size() > 0)
{
 InvocationFuture<Void> i = results.getFirst();
 results.removeFirst();
 i.join();
}

With this code, the client sends up to chunks before it waits for the least recent one of these requests to complete. In other words, the numRequests + 1
client sends the next request without waiting for the preceding request to complete, up to the limit set by . In effect, this allows the client to numRequests
"keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously do work.

Obviously, the correct chunk size and value of depend on the bandwidth of the network as well as the amount of time taken by the server to numRequests
process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger or queuing more requests no
longer improves performance. With this technique, you can realize the full bandwidth of the link to within a percent or two of the theoretical bandwidth limit
of a native socket connection.

Back to Top ^

Asynchronous Oneway Invocations in Java
You can invoke operations via oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, and does void
not raise user exceptions. If you call an asynchronous proxy method on a oneway proxy for an operation that returns values or raises a user exception, the
proxy method throws .TwowayOnlyException

The future returned for a oneway invocation completes as soon as the request is successfully written to the client-side transport. The future completes
exceptionally if an error occurs before the request is successfully written.

Back to Top ^

Flow Control in Java

Asynchronous method invocations never block the thread that calls the asynchronous proxy method. The Ice run time checks to see whether it can write
the request to the local transport. If it can, it does so immediately in the caller's thread. (In that case, returns InvocationFuture.sentSynchronously
true.) Alternatively, if the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the request internally for later
transmission in the background. (In that case, returns false.)InvocationFuture.sentSynchronously

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the requests pile
up in the client-side run time until, eventually, the client runs out of memory.

The class provides a way for you to implement flow control by counting the number of requests that are queued so, if that number InvocationFuture
exceeds some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport:

Java

ExamplePrx proxy = ...;

CompletableFuture<Result> f = proxy.doSomethingAsync();
InvocationFuture<Result> i = Util.getInvocationFuture(f);
i.whenSent((sentSynchronously, ex) ->
 {
 if(ex != null)
 {
 // handle errors...
 }
 else
 {
 // this request was sent, send another!
 }
 });

The method has the following semantics:whenSent

If the Ice run time was able to pass the entire request to the local transport immediately, the action will be invoked from the current thread and the
 argument will be true.sentSynchronously

If Ice wasn't able to write the entire request without blocking, the action will eventually be invoked from an Ice thread pool thread and the sentSyn
 argument will be false.chronously

If you need more control over the execution environment of your action, you can use one of the methods instead. The whenSentAsync sentSynchronou
 argument still behaves as described above, but your executor's implementation will determine the threading behavior.sly

Back to Top ^

Asynchronous Batch Requests in Java
You can invoke operations via batch oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, void
and does not raise user exceptions. If you call an asynchronous proxy method on a batch oneway proxy for an operation that returns values or raises a
user exception, the proxy method throws .TwowayOnlyException

The future returned for a batch oneway invocation is always completed and indicates the successful queuing of the batch invocation. The future completes
exceptionally if an error occurs before the request is queued.

Applications that send can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests ice_flushBa
 performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message can be tchRequests

sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

The proxy method flushes any batch requests queued by that proxy. In addition, similar methods are available on the ice_flushBatchRequestsAsync
communicator and the object that is returned by . These methods flush batch requests sent via the Connection InvocationFuture.getConnection
same communicator and via the same connection, respectively.

Back to Top ^

Canceling Asynchronous Requests in Java
CompletableFuture provides a method that you can call to cancel an invocation. If the future hasn't already completed either successfully or cancel
exceptionally, cancelling the future causes it to complete with an instance of .java.util.concurrent.CancellationException

Cancellation prevents a queued invocation from being sent or, if the invocation has already been sent, ignores a reply if the server sends one.
Cancellation is a local operation and has no effect on the server.

https://doc.zeroc.com/display/IceBeta/Batched+Invocations

Concurrency Semantics for AMI in Java
For the returned by an asynchronous proxy method, the Ice run time invokes or from an CompletableFuture complete completeExceptionally
Ice thread pool thread. The thread in which your action executes depends on the completion status of the future and the manner in which you registered
the action. Here are some examples:

Suppose you configure an action using . If the future is already complete at the time you call , the action will whenComplete whenComplete
execute immediately in the calling thread. If the future is not yet complete when you call , the action will eventually execute in an whenComplete
Ice thread pool thread.
Now suppose you configure an action using one of the methods. Regardless of the thread in which Ice completes the whenCompleteAsync
future, your executor's implementation will determine the thread context in which the action is invoked. The Ice thread pool can be used as an
executor; you can obtain the executor by calling the proxy method and passing it to . With the Ice thread ice_executor whenCompleteAsync
pool executor, the action is always queued to be executed by the Ice thread pool. If a is configured, the action will be passed to the dispatcher
configured dispatcher by the Ice thread pool thread that dequeues it, otherwise the action will be executed by the Ice thread pool thread that
dequeues it.

Refer to the discussion for information about the concurrency semantics of the flow control methods.flow control

Back to Top ^

See Also

Request Contexts
Batched Invocations
Collocated Invocation and Dispatch

https://doc.zeroc.com/display/IceBeta/Dispatching+Requests+to+User+Threads
https://doc.zeroc.com/display/IceBeta/Request+Contexts
https://doc.zeroc.com/display/IceBeta/Batched+Invocations
https://doc.zeroc.com/display/IceBeta/Collocated+Invocation+and+Dispatch
https://doc.zeroc.com/display/IceBeta/Customizing+the+Java+Mapping
https://doc.zeroc.com/display/IceBeta/slice2java+Command-Line+Options

	Asynchronous Method Invocation (AMI) in Java

