
AMI in Python with Futures

On this page:

Basic Asynchronous API in Python
Asynchronous Proxy Methods in Python
Asynchronous Exception Semantics in Python

Future Classes in Python
Python 3.5 Features

asyncio Integration
Awaitable Objects

Polling for Completion in Python
Asynchronous Oneway Invocations in Python
Flow Control in Python
Asynchronous Batch Requests in Python
Concurrency Semantics for AMI in Python

Basic Asynchronous API in Python
Consider the following simple Slice definition:

Slice

module Demo
{
 interface Employees
 {
 string getName(int number);
 }
}

Back to Top ^

Asynchronous Proxy Methods in Python

In addition to the synchronous proxy method, the Python mapping generates the following asynchronous proxy method:

Python

def getNameAsync(self, number, context=None)

As you can see, the operation generates a method, which optionally accepts a . sends getName getNameAsync per-invocation context getNameAsync
(or queues) an invocation of , and does not block the calling thread. It returns an instance of that you can use in a getName Ice.InvocationFuture
number of ways, including blocking to obtain the result, configuring an action to be executed when the result becomes available, and canceling the
invocation.

Here's an example that calls :getNameAsync

Python

e = EmployeePrx.checkedCast(...)
f = e.getNameAsync(99)

Continue to do other things here...

name = f.result()

Because does not block, the calling thread can do other things while the operation is in progress.getNameAsync

https://doc.zeroc.com/display/IceBeta/Asynchronous+Method+Invocation+%28AMI%29+in+Python
https://doc.zeroc.com/display/IceBeta/AMI+in+Python+with+AsyncResult
https://doc.zeroc.com/display/IceBeta/Request+Contexts

An asynchronous proxy method uses the same parameter mapping as for ; the only difference is that the result (if any) is returned synchronous operations
via an . For example, consider the following operation:InvocationFuture

Slice

double op(int inp1, string inp2, out bool outp1, out long outp2);

The generated code looks like this:

Python

def opAsync(self, inp1, inp2, context=None)

Now let's call to demonstrate one way of asynchronously executing an action when the invocation completes:add_done_callback

Python

p.opAsync(42, "value for inp2").add_done_callback(lambda future: ret, outp1, outp2 = future.result())

As with the synchronous mapping, an operation that returns multiple values supplies its result as a tuple. The completion callback, in this case a lambda
function, receives the future as its argument and extracts the values from the result tuple.

Back to Top ^

Asynchronous Exception Semantics in Python

If an invocation raises an exception, the exception can be obtained from the future in several ways:

Call on the future; raises the exception directlyresult result
Call on the future; returns the exception objectexception exception

The exception is provided by the future, even if the actual error condition for the exception was encountered during the call to the method ("on opAsync
the way out"). The advantage of this behavior is that all exception handling is located with the code that handles the future (instead of being present twice,
once where the method is called, and again where the future is handled).opAsync

There are two exceptions to this rule:

if you destroy the communicator and then make an asynchronous invocation, the method throws opAsync CommunicatorDestroyedException
 directly.
a call to an function can throw . An function throws this exception if you call an operation that has a return Async TwowayOnlyException Async
value or out-parameters on a oneway proxy.

Back to Top ^

Future Classes in Python
Ice provides two future classes: and . Asynchronous proxy invocations return an instance of Ice.Future Ice.InvocationFuture InvocationFuture
, which is a subclass of . The API for is similar to that of Python's and classes, Future Ice.Future asyncio.Future concurrent.futures.Future
while adds some Ice-specific methods that clients may find useful.InvocationFuture

https://doc.zeroc.com/display/IceBeta/Python+Mapping+for+Operations

Python

class Future(...):
 def cancel(self)
 def cancelled(self)
 def running(self)
 def done(self)

 def add_done_callback(self, fn)

 def result(self, timeout=None)
 def exception(self, timeout=None)

 def set_result(self, result)
 def set_exception(self, ex)

 def completed(result)
 completed = staticmethod(completed)

class InvocationFuture(Future):
 def add_done_callback_async(self, fn)

 def is_sent(self)
 def is_sent_synchronously(self)
 def add_sent_callback(self, fn)
 def add_sent_callback_async(self, fn)
 def sent(self, timeout=None)
 def set_sent(self, sentSynchronously)

 def communicator(self)
 def connection(self)
 def proxy(self)
 def operation(self)

The methods have the following semantics:Future

cancel(self)
This method prevents a queued invocation from being sent or, if the invocation has already been sent, ignores a reply if the server sends one. can

 is a local operation and has no effect on the server. A canceled invocation is considered to be completed, meaning returns true, and cel done
the result of the invocation is an .Ice.InvocationCanceledException

cancelled(self)
This method returns frue if the invocation was cancelled via a call to , or false otherwise.cancel

running(self)
This method returns true if the invocation has not yet completed or been cancelled, or false otherwise.

done(self)
This method returns true if the invocation has completed (either successfully or exceptionally) or has been cancelled, or false otherwise.

add_done_callback(self, fn)
This method registers a callback to be executed when the invocation completes, either successfully or exceptionally. The callback function
receives the future as its only argument. If the invocation is already completed at the time is called, the callback method is add_done_callback
invoked recursively from the calling thread, otherwise the callback method is invoked in the thread that completes the invocation.

result(self, timeout=None)
This method returns the result of the invocation. If an optional timeout is provided, the method will block for up to the given timeout waiting for the
invocation to complete and raises if the timeout expires without completion. If no timeout is provided, the method Ice.TimeoutException
blocks indefinitely. If the invocation completes with an exception, the method raises the exception directly. For a Slice operation declared with a vo

 return type, the method returns upon successful completion.id None

exception(self, timeout=None)
This method returns the exception that completed the invocation, or if the invocation completed successfully. If an optional timeout is None
provided, the method will block for up to the given timeout waiting for the invocation to complete and raises if the Ice.TimeoutException
timeout expires without completion. If no timeout is provided, the method blocks indefinitely.

set_result(self, result)
This method completes the invocation successfully using the given result. Calling this method has no effect if the invocation is already completed.

set_exception(self, ex)
This method completes the invocation exceptionally using the given exception. Calling this method has no effect if the invocation is already
completed.

completed(result)
This static convenience method returns an instance of that is already completed successfully with the given result.Ice.Future

The methods have the following semantics:InvocationFuture

add_done_callback_async(self, fn)
This method's semantics differ from that of in the situation where the future is already completed. When you call add_done_callback add_don

 and the future is already completed, the callback will be invoked by an Ice thread (or by a if one is configured).e_callback_async dispatcher

is_sent(self)
When you call an asynchronous proxy method, the Ice run time attempts to write the corresponding request to the client-side transport. If the
transport cannot accept the request, the Ice run time queues the request for later transmission. returns true if, at the time it is called, the is_sent
request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still queued or an exception
occurred before the request could be sent, returns false.is_sent

is_sent_synchronously(self)
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially queued, is_sen

 returns false (independent of whether the request is still in the queue or has since been written to the client-side transport).t_synchronously

add_sent_callback(self, fn)
This method registers a callback to be executed when the invocation has been sent. The callback function receives two arguments: the future
object and a boolean indicating whether the invocation was sent synchronously. If the invocation is already sent at the time add_sent_callback
is called, the callback method is invoked recursively from the calling thread. Otherwise, the callback method is invoked by an Ice thread (or by a di

 if one is configured).spatcher

add_sent_callback_async(self, fn)
This method's semantics differ from that of in the situation where the invocation is already sent. When you call add_sent_callback add_sent_

 and the invocation is already sent, the callback will be invoked by an Ice thread (or by a if one is configured).callback_async dispatcher

sent(self, timeout=None)
This method waits for the invocation to be sent and returns a boolean indicating whether the invocation was sent synchronously. If an optional
timeout is provided, the method will block for up to the given timeout waiting for the invocation to be sent and raises if Ice.TimeoutException
the timeout expires beforehand. If no timeout is provided, the method blocks indefinitely. If the invocation completes with an exception, the
method raises the exception directly.

set_sent(self, sentSynchronously)
This method marks the invocation as sent, and the boolean argument indicates whether it was sent synchronously.

communicator(self)
This method returns the communicator that sent the invocation.

connection(self)
This method returns the connection that was used for the invocation. Note that, for typical asynchronous proxy invocations, this method returns a
nil value because the possibility of automatic retries means the connection that is currently in use could change unexpectedly. The getConnecti

 method only returns a non-nil value when the object is obtained by calling on a on AsyncResult begin_flushBatchRequests Connection
object.

proxy(self)
This method returns the proxy that was used to call the asynchronous proxy method, or if the future was not obtained via an asynchronous None
proxy invocation.

operation(self)
This method returns the name of the operation.

Back to Top ^

Python 3.5 Features
Ice's future types provide some additional features when using Python 3.5 or later.

asyncio Integration

The function wraps an Ice future object with an instance of . The function accepts an object and Ice.wrap_future asyncio.Future Ice.Future
returns an object. Since objects support use in multi-threaded applications, ensures that the resulting asyncio.Future Ice.Future wrap_future asy

 object is completed in a thread-safe manner.ncio.Future

Awaitable Objects

Ice.Future is an object, meaning an instance can be used as the target of the keyword. Note however that your chosen event loop awaitable await
implementation must also support objects. For example, attempting to call on an while using the event loop Ice.Future await Ice.Future asyncio
will result in an error because 's event loop doesn't support "foreign" future types.asyncio

One situation where objects can be awaited is in a method that is implemented as a coroutine.Ice.Future servant dispatch

https://doc.zeroc.com/display/IceBeta/Dispatching+Requests+to+User+Threads
https://doc.zeroc.com/display/IceBeta/Dispatching+Requests+to+User+Threads
https://doc.zeroc.com/display/IceBeta/Dispatching+Requests+to+User+Threads
https://doc.zeroc.com/display/IceBeta/Dispatching+Requests+to+User+Threads
https://doc.zeroc.com/display/IceBeta/Asynchronous+Method+Dispatch+%28AMD%29+in+Python

Back to Top ^

Polling for Completion in Python
The methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the following InvocationFuture
simple interface to transfer files from client to server:

Slice

interface FileTransfer
{
 void send(int offset, ByteSeq bytes);
}

The client repeatedly calls to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit a file would be send
along the following lines:

Python

file = open(...)
ft = FileTransferPrx.checkedCast(...)
chunkSize = ...
offset = 0
while not file.eof():
 bytes = file.read(chunkSize) # Read a chunk
 ft.send(offset, bytes) # Send the chunk
 offset += len(bytes.length)

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to receive the
data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time doing nothing — the
client does nothing while the server processes the data, and the server does nothing while it waits for the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

Python

file = open(...)
ft = FileTransferPrx.checkedCast(...)
chunkSize = ...
offset = 0

results = []
numRequests = 5

while not file.eof():
 bytes = file.read(chunkSize) # Read a chunk

 # Send up to numRequests + 1 chunks asynchronously.
 f = ft.sendAsync(offset, bytes)
 offset += len(bytes)

 # Wait until this request has been passed to the transport.
 f.sent()
 results.append(f)

 # Once there are more than numRequests, wait for the least
 # recent one to complete.
 while len(results) > numRequests:
 f = results[0]
 del results[0]
 f.result()

Wait for any remaining requests to complete.
while len(results) > 0:
 f = results[0]
 del results[0]
 f.result()

With this code, the client sends up to chunks before it waits for the least recent one of these requests to complete. In other words, the numRequests + 1
client sends the next request without waiting for the preceding request to complete, up to the limit set by . In effect, this allows the client to numRequests
"keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously do work.

Obviously, the correct chunk size and value of depend on the bandwidth of the network as well as the amount of time taken by the server to numRequests
process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger or queuing more requests no
longer improves performance. With this technique, you can realize the full bandwidth of the link to within a percent or two of the theoretical bandwidth limit
of a native socket connection.

Back to Top ^

Asynchronous Oneway Invocations in Python
You can invoke operations via oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, and does void
not raise user exceptions. If you call an asynchronous proxy method on a oneway proxy for an operation that returns values or raises a user exception, the
method throws .TwowayOnlyException

The future returned for a oneway invocation completes as soon as the request is successfully written to the client-side transport. The future completes
exceptionally if an error occurs before the request is successfully written.

Back to Top ^

Flow Control in Python
Asynchronous method invocations never block the thread that calls the method: the Ice run time checks to see whether it can write the request to begin_
the local transport. If it can, it does so immediately in the caller's thread. (In that case, returns true.) InvocationFuture.is_sent_synchronously
Alternatively, if the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the request internally for later
transmission in the background. (In that case, returns false.)InvocationFuture.is_sent_synchronously

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the requests pile
up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds some threshold,
the client stops invoking more operations until some of the queued operations have drained out of the local transport.

You can supply a sent callback to be notified when the request was successfully sent:

Python

def sentCallback(future, sentSynchronously):
 # The request was sent, send another!

proxy = ...

future = proxy.doSomethingAsync()
future.add_sent_callback(sentCallback)

The method has the following semantics:add_sent_callback

If the Ice run time was able to pass the entire request to the local transport immediately, the action will be invoked from the current thread and the
 argument will be true.sentSynchronously

If Ice wasn't able to write the entire request without blocking, the action will eventually be invoked from an Ice thread pool thread and the sentSyn
 argument will be false.chronously

Back to Top ^

Asynchronous Batch Requests in Python
You can invoke operations via batch oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, void
and does not raise user exceptions. If you call an asynchronous proxy method on a oneway proxy for an operation that returns values or raises a user
exception, the method throws .TwowayOnlyException

The future returned for a batch oneway invocation is always completed and indicates the successful queuing of the batch invocation. The future completes
exceptionally if an error occurs before the request is queued.

Applications that send can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests ice_flushBa
 performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message can be tchRequests

sent. Ice also provides an asynchronous version of this method so you can flush batch requests asynchronously.

ice_flushBatchRequestsAsync is a proxy method that flushes any batch requests queued by that proxy, without blocking the calling thread.

In addition, similar methods are available on the communicator and the object that is returned by . Connection InvocationFuture.connection
These methods flush batch requests sent via the same communicator and via the same connection, respectively.

Back to Top ^

Concurrency Semantics for AMI in Python
For the returned by an asynchronous proxy method, the Ice run time invokes or from an Ice thread InvocationFuture set_result set_exception
pool thread. When you register an action with , the thread in which your action executes depends on the completion status of the add_done_callback
future. If the future is already complete at the time you call , the callback function will be invoked immediately in the calling thread. If add_done_callback
the future is not yet complete when you call , the action will eventually execute in an Ice thread pool thread.add_done_callback

The semantics are slightly different when you register an action with : the action is always executed in an Ice thread pool add_done_callback_async
thread regardless of the completion status of the future at the time of the call.

Refer to the discussion for information about the concurrency semantics of the flow control methods.flow control

Back to Top ^

See Also

Python Mapping for Operations
Request Contexts
Batched Invocations

If a is configured, the Ice thread pool thread delegates the execution of the action to the dispatcher.dispatcher

https://doc.zeroc.com/display/IceBeta/Batched+Invocations
https://doc.zeroc.com/display/IceBeta/Python+Mapping+for+Operations
https://doc.zeroc.com/display/IceBeta/Request+Contexts
https://doc.zeroc.com/display/IceBeta/Batched+Invocations
https://doc.zeroc.com/display/IceBeta/Dispatching+Requests+to+User+Threads

https://doc.zeroc.com/display/IceBeta/Asynchronous+Method+Invocation+%28AMI%29+in+Python
https://doc.zeroc.com/display/IceBeta/AMI+in+Python+with+AsyncResult

	AMI in Python with Futures

