Dispatching Requests to User Threads
&

Previous

By default, Ice uses a thread from one of its thread pools to dispatch requests and to execute callbacks registered to run upon completion of asynchronous
invocations.

For regular calls, Ice uses threads from its server thread pool (or object adapter thread pool, if one is configured) for dispatching requests, and it uses
threads from its client thread pool to execute AMI callbacks. For bidir calls, the roles are reversed: Ice uses threads from its client thread pool for
dispatching requests and threads from the server thread pool (or object adapter thread pool) for AMI callbacks.

This simple behavior is suitable for most applications. There are however situations you may want to execute dispatches or AMI callbacks in a particular
thread. For example, in a server, you might need to update a database that does not permit concurrent access from different threads or, in a client, you
might need to update a user interface with the results of an invocation. (Many Ul frameworks require all Ul updates to be made by a specific thread.)

Ice allows you to register a dispatcher to control which thread(s) execute dispatches and AMI callbacks. The dispatcher API is specific to each language
mapping.

On this page:

Dispatcher Interception Point

Registering the Dispatcher in InitializationData
Trivial Dispatcher

Dispatcher for Graphical Applications
Dispatcher with Future Results

Dispatcher Interception Point

A dispatcher intercepts a call (request dispatch or AMI callback) and can select in which thread to execute this call. An Ice communicator gives each such
call to the registered dispatcher before this call unmarshals parameters and before this call locates the target servant (for request dispatches). The call
given to the dispatcher takes no parameters, returns nothing, and never throws any exception back to the dispatcher.

Registering the Dispatcher in InitializationData

You configure the dispatcher used by an Ice communicator by setting the data member di spat cher ofitsIniti al i zati onDat a:

C++11
int
mai n(int argc, char* argv[])

{

lce::InitializationData initData;
initData.properties = lce::createProperties(argc, argv);
i ni t Dat a. di spat cher = di spat cher Functi on;

I ce: : Conmmuni cat or Hol der ich(argc, argv, initData);

/1

The di spat cher data member's type is std: : functi on<voi d(std::functi on<voi d()>, const std::shared_ptr<lce::Connection>&) >.
C++98

https://doc.zeroc.com/display/IceBeta/Thread+Safety
https://doc.zeroc.com/display/IceBeta/Blocking+API+Calls
https://doc.zeroc.com/display/IceBeta/Thread+Pools
https://doc.zeroc.com/display/IceBeta/Bidirectional+Connections
https://doc.zeroc.com/display/IceBeta/Communicator+Initialization

class MyDi spatcher : public Ice::Dispatcher /*, ... */

{
/1
I
int
mai n(int argc, char* argv[])
{
lce::InitializationData initData;
initData.properties = lce::createProperties(argc, argv);
i ni tData.di spatcher = new MyDi spat cher;
I ce: : Conmuni cat or Hol der ich(argc, argv, initData);
}

The | ce: : Di spat cher abstract base class has the following interface:

nanespace |ce

{ class Dispatcher : public virtual Iceltil:: Shared
{
public:
virtual void dispatch(const DispatcherCallPtr& const ConnectionPtr& = O;
}
typedef IceUtil::Handl e<Di spatcher> Di spatcherPtr;
}

The Di spat cher Cal | instance encapsulates all the details of the call. It is another abstract base class with the following interface:

nanespace |ce

{
class DispatcherCall : public virtual IceUtil:: Shared
{
public:
virtual ~DispatcherCall() { }
virtual void run() = 0;
b
typedef IceUtil::Handl e<Di spatcherCall > Di spatcherCallPtr;
}
Ctt
C

public class Server

{
public static void Main(string[] args)
{
Ice.lnitializationData initData = new Ice.lnitializationData();
initData.dispatcher = (System Action call, Ice.Connection connection) => { ... };
usi ng(l ce. Conmuni cator communi cator = lce.UWil.initialize(ref args, initData))
{
/1
}
}
}

The dispatcher is a delegate with type Syst em Acti on<Syst em Acti on, |ce. Connection>.
Java

public class Server

{ public static void main(String[] args)
{ com zeroc.lce.lnitializationData initData = new com zeroc.lce.lnitializationData();
i ni tData.dispatcher = (runnable, connection) ->{ ... };
try(com zeroc. | ce. Coomuni cat or communi cator = com zeroc.lce. Uil .initialize(args,
{
11
}
cat ch(Local Exception ex)
{
/1
}
11
}
}

The di spat cher is an object (typically a lambda) that implements the functional interface j ava. uti | . f uncti on. Bi Consuner <Runnabl e,

zeroc. | ce. Connecti on>.
Java Compat
public class MyDi spatcher inplenents |ce.Dispatcher

{
/1
}
public class Server
{
public static void nain(String[] args)
{ Ice.lnitializationData initData = new Ice.lnitializationData();
initData.dispatcher = new MyDi spatcher();
try(lce. Communi cator communi cator = Ice. Util.initialize(args, initData))
{
/1
}
/1
}
}

The di spat cher is an object that implements the functional interface | ce. Di spat cher:

public interface Dispatcher

{

voi d di spat ch(Runnabl e runnabl e, |ce. Connection con);

com

int
mai n(int argc, char* argv[])

{
obj c_startCol |l ector Thread();
i d<I CEConmmuni cat or > conmuni cator = nil;
@ry
{
ICEInitializationData* initData = [ICEInitializationData initializationData];
i nitData.dispatcher =
(i d<l CED spatcherCall> call, id<lCEConnection> con)
{
/1
b
communi cator = [ICEUil createComunicator: &rgc argv:argv initData:initData];
/1
}
@at ch(| CELocal Excepti on* ex)
{
/1
}
/1
}

The type of the dispatcher callback must match the following block signature:

voi d(”) (i d<I CEDi spat cherCal |l > cal |, id<lCEConnection> connecti on)

The | CEDi spat cher Cal | protocol defines how to execute the call:

@rotocol | CED spatcherCall <NSObject>
-(void) run;

@nd
Python
initData = lce.lnitializationData()
i ni tData.dispatcher = | anbda call, connection:
with lce.Uil.initialize(sys.argv, initData) as conmunicator:
...

The dispatcher is a callable object.

Afterwards, the Ice communicator calls the configured dispatcher whenever it dispatches a request or executes an application-supplied callback upon
completion of an asynchronous invocation. The first parameter given to the dispatcher corresponds to the call (dispatch or AMI callback) that the
dispatcher must execute. The second parameter is the connection associated with this call (if any). The connection parameter is null in the following
situations:

® for collocated calls
* when the call failed before a connection could be associated with this call
® when the call is executed through a C# scheduler or Java executor (see Dispatcher with Future Results later on this page)

1 Adispatcher must always execute the supplied call. Failure to dispatch a call will cause Comuni cat or : : dest r oy to block indefinitely.
Furthermore, a dispatcher must not make blocking calls from the dispatch thread, such as synchronous invocations or calls to proxy methods
that can potentially block, like i ce_get Connect i on. Since these calls use the dispatcher for their own completion, you will get a deadlock if
your dispatcher executes all calls on a single thread.

If a dispatcher has resources that must be reclaimed (e.g., joining with a helper thread), it can safely do so after Conmmruni cat or : : dest r oy has
completed.

Trivial Dispatcher

You can write a dispatcher that blocks and waits for completion of the supplied call, since the dispatcher is called by a thread in the server-side thread pool
(for non-bidir request dispatches) or the client-side thread pool (for non-bidir AMI callbacks). For example:

C++11
initData.dispatcher = [](std::function<void()> dispatchCall, const std::shared_ptr<lce:: Connection>&)
{
di spatchCall (); // Does not throw, blocks until the call conpletes.
b
C++98
class MyDi spatcher : public Ice::Dispatcher
{
public:
virtual void dispatch(const Ice::Di spatcherCallPtr& d, const Ice::ConnectionPtr&)
{
d->run(); // Does not throw, blocks until the call conpletes.
}
}
C#
initData.dispatcher = (System Action call, |ce.Connection connection) =>
{
call(); // Does not throw, blocks until the call conpletes.
}
Java

ini tData.dispatcher = (runnable, connection) -> { runnable.run(); };

Java Compat
public class MyDi spatcher inplenents |ce.D spatcher

{
public void di spatch(Runnabl e runnabl e, |ce.Connection connection)
{
/1 Does not throw, blocks until the call conpletes.
runnabl e. run();
}
}
Objective-C
voi d(~nmyDi spat cher) (i d<I CEDi spat cher Cal | >, i d<lI CEConnecti on>) =
(i d<I CEDi spatcherCall> call, id<lCEConnection> con)
{
/1 Does not throw, blocks until the call conpletes.
[call run];
I
Python
initData.dispatcher = | anbda call, connection: call ()

This implementation ties up a thread in the thread pool for the duration of the call, and is not particularly useful: a communicator with no dispatcher
provides the same behavior.

Dispatcher for Graphical Applications

The primary use-case for dispatchers is graphical applications where only one thread is allowed to call Ul methods. With such an application, you can
register a dispatcher that executes all calls in the Ul thread. You can also use the Ul thread to make asynchronous invocations, since Ice guarantees
asynchronous invocations never block the calling thread.

Here are some examples:

C++11

With Qt

/1
/1 Define a customevent type to be used by the dispatcher
/1

cl ass Di spat chEvent publ i c QEvent

std::shared_ptr<lce:: Connection>&)

{
public:
Di spat chEvent (std:: function<void()> call)
QEvent (QEvent : : Type(CUSTOM EVENT_TYPE)),
_call(call)
{
}
voi d di spatch()
{
_call();
}
private:
std::function<void()> _call;
b
Mai nW ndow: : Mai nW ndow()
{
lce::InitializationData initData;
initData.properties = lce::createProperties();
/1
/1 The dispatcher inplenentation creates a new Di spatchEvent and adds it to event
/'l queue, setting this object as the receiver of the event.
/1
initData.dispatcher = [this](std::function<void()> dispatchCall, const
{
QApplication::postEvent(this, new Di spatchEvent (di spatchCall));
}
_conmunicator = lce::initialize(initData);
}

/1
/] Override QObject::event to handl e our customevent type and del egate
/1 to the base class to handl e other event types.

11
bool
Mai nW ndow: : event (QEvent * event)
{
if(event->type() == CUSTOM EVENT_TYPE)
{
aut o di spatchEvent = static_cast<Di spat chEvent *>(event);
try
{
di spat chEvent - >di spat ch();
}
catch(const std::exception& ex)
{
}
return true;
}
return QVai nW ndow: : event (event);
}

C++98

With MFC

class M/Dialog : public Chialog { ... };
class MyDi spatcher : public Ice::Dispatcher
{
public:
MyDi spat cher (MyDi al og* di al og) : _dial og(dial og)
{
}
virtual void
di spat ch(const Ice::DispatcherCallPtr& call, const Ice::ConnectionPtr&)
{
_di al og- >Post Message(WW_AM _CALLBACK, O,
rei nterpret_cast <LPARAM>(new | ce:: Di spatcherCal | Ptr(call)));
}
private:
MWD al og* _di al og;
b

The MyDi spat cher class simply stores the CDi al og handle for the Ul and calls Post Message, passing the Di spat cher Cal | instance. In turn, this
causes the Ul thread to receive an event and invoke the Ul callback method that was registered to respond to WM_AM _ CALLBACK events.

The implementation of the callback function calls r un:

With MFC
LRESULT
MyDi al og: : OnAM Cal | back(WPARAM LPARAM | Par am
{
try
{
Ice::DispatcherCall Ptr* call = reinterpret_cast<lce::Di spatcherCallPtr*>(|Paran);
(*call)->run();
delete call;
}
catch(const |ce:: Exception& ex)
{
/1
}
return O;
}

The Ice run time calls di spat ch once the asynchronous invocation is complete. In turn, this triggers the OnAM Cal | back which calls r un. Because the
operation has completed already, r un does not block, so the Ul remains responsive.
Ctt

With WPF

public partial class MW ndow : W ndow

{
private void W ndow_Loaded(obj ect sender, EventArgs e)
{
Ice.lnitializationData initData = new Ice.lnitializationData();
initData.dispatcher = (System Action call, Ice.Connection connection) =>
{
Di spat cher . Begi nl nvoke(Di spatcherPriority. Normal, action);
b
usi ng(| ce. Conmuni cat or comuni cator = lce.Wil.initialize(initData))
{
/1
}
}

The delegate calls Di spat cher . Begi nl nvoke on the act i on delegate. This causes WPF to queue the actual asynchronous invocation of act i on for
later execution by the Ul thread. Because the Ice run time does not call your delegate until an asynchronous invocation is complete, when the Ul thread
executes the corresponding call to the Endl nvoke method, that call does not block and the Ul remains responsive.

The net effect is that you can invoke an operation asynchronously from a Ul callback method without the risk of blocking the Ul thread. For example:

With WPF

public partial class MW ndow : W ndow

{
private async void someCp_d ick(object sender, RoutedEventArgs e)
{
MWintfPrx p = ...;
try
/1 Call renote operation asynchronously.
await p.someQpAsync();
/1 Update Ul ...
}
cat ch(Syst em Exception ex)
{
/1 Update Ul ...
}
}
}

We're using Ice's task-based API together with the async and awai t keywords to execute asynchronous tasks in a straightforward way. The return value
of soneCpAsync is a Task on which we use the awai t keyword to suspend processing until the call completes. Thanks to the dispatcher, processing
eventually resumes in the Ul thread and we can update the Ul as needed. The cshar p/ | ce/ wpf demo shows a fully-functional Ul client that uses this
technique.

Java

With Swing

public class Oient extends JFrame

{
public static void nain(final String[] args)
{
SwingUtilities.invokeLater(
0 ->{
try
{
new Cdient(args);
}
catch(com zeroc. | ce. Local Exception e)
{
JOpt i onPane. showMessageDi al og(
null, e.toString(),
"Initialization failed",
JOpt i onPane. ERROR_MESSAGE) ;
}
b
}
Client(String[] args)
{
com zeroc.lce.lnitializationData initData = new com zeroc.lce.lnitializationData();
initData.dispatcher = (runnable, connection) ->{ SwingUtilities.invokeLater(runnable); };
try(com zeroc. | ce. Conmuni cat or communi cator = com zeroc.lce. Uil.initialize(args, initData))
{
}
}

https://doc.zeroc.com/display/IceBeta/AMI+in+C-Sharp+with+Tasks

The dispatcher simply delays the call to r un by calling i nvokelLat er, passing it the Runnabl e that is provided by the Ice run time. This causes the
Swing Ul thread to make the call to r un. Because the Ice run time does not call the dispatcher until the asynchronous invocation is complete, that call to r
un does not block and the Ul remains responsive.

The j ava/ | ce/ swi ng demo shows a fully-functional Ul client that uses this technique.
ObjC

With Cocoa

- (voi d) vi ewhi dLoad

{
ICEInitializationData* initData = [ICEInitializationData initializationData];
i ni tData.dispatcher =
(i d<l CED spatcherCall> call, id<lCEConnecti on> con)
{
di spatch_sync(di spatch_get_mai n_queue(), ~ { [call run]; });
b
comuni cator = [[ICEUtil createComunicator:initData] retain];
/1
}

The dispatcher callback calls di spat ch_sync on the main queue. This queues the actual call for later execution by the main thread. Because the Ice run
time does not call the dispatcher callback until an asynchronous operation invocation is complete, when the Ul thread executes the corresponding call, that
call does not block and the Ul remains responsive.

The net effect is that you can invoke an operation asynchronously from a Ul callback method without the risk of blocking the Ul thread. For example:

With Cocoa

- (voi d) someQp: (i d) sender

{

id<MyIntfPrx>p = ...;

[p begin_soneOp: { [self response]; }

exception: ~(| CEException* ex) { [self exception:ex]; }1;

}
-(void) response
{

/1 Update Ul ...
}

-(void) exception: (| CEException* ex)
(p p

/1 Update Ul ...

The obj ecti ve-c/ | cel/i OS/ hel | o demo shows a fully-functional Ul client that uses this technique.

Back to Top

Dispatcher with Future Results

With C#, Java and Python, asynchronous method invocations return a "future" object on which you can register callbacks to execute upon completion. This
future object is a Task in C#, a CompletableFuture in Java and an Ice.InvocationFuture in Python. (We are ignoring here the deprecated AMI APIs for C#
and Python that don't return future objects.)

In C# and Java, the thread that executes the callback you supply is determined by the .NET and Java specifications, respectively, so unless you are
careful, you typically won't use the configured dispatcher for these callbacks.

It is also possible that the call has already completed by the time you register the callback with the future object, so depending on how you register the
callback, the callback could execute synchronously from the calling thread.

If you want to always use the configured dispatcher for these callbacks, regardless of whether or not the call already completed when you register the
callback, you need to:

https://msdn.microsoft.com/en-us/library/system.threading.tasks.task(v=vs.110).aspx
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://doc.zeroc.com/display/IceBeta/AMI+in+Python+with+Futures

® in C#, register your callback with Cont i nueW t h using a custom scheduler provided by pr oxy. i ce_schedul er (). pr oxy represents the
proxy you used for the asynchronous invocation. You should also not specify the Execut eSynchr onousl y task continuation option or you
should use the RunCont i nuat i onsAsynchr onousl y option to ensure callbacks are always executed asynchronously even if the task
completed when Cont i nueW't h is called.

® inJava, call an Async method on the Conpl et abl eFut ur e result (such as whenConpl et eAsync), and pass proxy. i ce_execut or () as
the second parameter. pr oxy represents the proxy you used for the asynchronous invocation.

® in Python, register your callback with add_done_cal | back_async instead of add_done_cal | back.

Back to Top »

See Also

Asynchronous Method Invocation (AMI) in C++11
Asynchronous Method Invocation (AMI) in C++98
Asynchronous Method Invocation (AMI) in C-Sharp
Asynchronous Method Invocation (AMI) in Java
Asynchronous Method Invocation (AMI) in Java Compat
Asynchronous Method Invocation (AMI) in Objective-C
Asynchronous Method Invocation (AMI) in Python

-

Previous

https://doc.zeroc.com/pages/viewpage.action?pageId=22776062
https://doc.zeroc.com/pages/viewpage.action?pageId=22776130
https://doc.zeroc.com/display/IceBeta/Asynchronous+Method+Invocation+%28AMI%29+in+C-Sharp
https://doc.zeroc.com/display/IceBeta/Asynchronous+Method+Invocation+%28AMI%29+in+Java
https://doc.zeroc.com/display/IceBeta/Asynchronous+Method+Invocation+%28AMI%29+in+Java+Compat
https://doc.zeroc.com/display/IceBeta/Asynchronous+Method+Invocation+%28AMI%29+in+Objective-C
https://doc.zeroc.com/display/IceBeta/Asynchronous+Method+Invocation+%28AMI%29+in+Python
https://doc.zeroc.com/display/IceBeta/Thread+Safety
https://doc.zeroc.com/display/IceBeta/Blocking+API+Calls

	Dispatching Requests to User Threads

