
Upgrading your Application from Ice 3.5
In addition to the information provided in Upgrading your Application from Ice 3.6, users who are upgrading from Ice 3.5 should also review this page.

On this page:

Timeout changes
ACM changes
IceGrid and Glacier2 sessions
Glacier2 compatibility for helper classes
SSL changes

SSLv3 disabled by default
Certificate verification
SSL changes on OS X
SSL changes on Windows
SSL changes on Linux

Collocated Invocation changes
Batch Invocation changes
Logger changes
Crypt Password changes
C++ changes

Garbage collection changes
String converter changes
OS X with C++

Java changes
Java mapping changes
New Java features

C# changes
C# mapping changes
C# serialization changes

Python changes
PHP changes
Ruby changes
JavaScript changes

JavaScript mapping changes
JavaScript packaging changes

Objective-C changes
Ubuntu packages
Migrating IceGrid databases from Ice 3.5
Migrating IceStorm databases from Ice 3.5
Migrating Freeze databases from Ice 3.5
Migrating Android applications from Ice 3.5
Changed APIs
Removed APIs
Deprecated APIs
Visual C++ compiler warnings

Timeout changes
In previous Ice versions, the timeout set for a connection also served as the timeout for all invocations on that connection, such that an invocation timeout
would cause Ice to close the connection and consequently report a timeout exception for all pending invocations on that connection.

With the addition of invocation timeouts, Ice now provides a much cleaner separation between two distinct features:

Connection timeouts
These timeouts should be used as a fail-safe strategy for handling unrecoverable network errors in a timely fashion.

Invocation timeouts
You can now safely abort an invocation that's taking too long to complete without affecting other invocations pending on the same connection.

Together with the new heartbeat functionality offered by Ice's facility, applications now have much more control over their Active Connection Management
connections.

Existing Ice applications could configure connection timeouts in several ways, such as by setting , or with the option in endpoints, Ice.Override.Timeout -t
or by calling on proxies. Ice still supports all of these options, and they all configure connection timeouts just like in previous Ice versions. ice_timeout
However, you should carefully review these settings to see that they match the true purpose of connection timeouts. Specifically, connection timeouts
should normally be chosen based on the speed of the network on which a connection takes place; a small timeout value is fine for a relatively fast network,
but a larger value may be necessary for slower connections. Ice enforces connection timeouts when performing network operations such as connection
establishment, reading, writing, and closing; setting a timeout allows Ice (and therefore the application) to detect a network problem within a well-defined
time period without waiting for low-level network protocols to detect and report the issue.

We recommend that every application enable connection timeouts, and as a result they are now enabled by default as defined by the new property Ice.
.Default.Timeout

https://doc.zeroc.com/display/IceBeta/Upgrading+your+Application+from+Ice+3.6
https://doc.zeroc.com/display/IceBeta/Connection+Timeouts
https://doc.zeroc.com/display/IceBeta/Invocation+Timeouts
https://doc.zeroc.com/display/IceBeta/Active+Connection+Management
https://doc.zeroc.com/pages/viewpage.action?pageId=22777094#Ice.Override.*-Ice.Override.Timeout
https://doc.zeroc.com/pages/viewpage.action?pageId=22777090#Ice.Default.*-Ice.Default.Timeout
https://doc.zeroc.com/pages/viewpage.action?pageId=22777090#Ice.Default.*-Ice.Default.Timeout

The timeout semantics in previous Ice versions made it difficult for developers to employ invocation timeouts correctly. Using a small timeout value in order
to detect network issues reasonably soon risked the possibility that some invocations might time out prematurely. These conflicting goals may have caused
developers to modify their application designs to avoid long-running invocations. With the introduction of a separate invocation timeout feature, it's now
possible to set connection timeouts appropriately for network errors while using invocation timeouts only for those operations that require them. Unlike
connection timeouts, where setting different timeout values causes Ice to open separate connections, invocation timeouts of various values can be freely
mixed on the same connection.

The default invocation timeout in Ice 3.6 is "infinite", meaning invocations do not time out by default. You can change the default setting using the new
property . For individual proxies, the method returns a new proxy configured with the Ice.Default.InvocationTimeout ice_invocationTimeout
desired invocation timeout. If you need to continue using the timeout semantics of previous Ice versions, set to oIce.Default.InvocationTimeout -2
r call with the value on a given proxy.ice_invocationTimeout -2

Note that retry semantics differ between connection and invocation timeouts. Ice still performs if possible for connection timeouts, but automatic retries
does not retry invocations that fail due to an invocation timeout.

Back to Top ^

ACM changes
The (ACM) facility now offers additional control over its behavior, along with a new automatic heartbeat feature. Client-Active Connection Management
side ACM was enabled by default in prior Ice versions, which means an existing Ice application most likely uses ACM unless the application explicitly
disabled it.

There are several ACM changes that may affect an existing application:

The and properties have been deprecated and replaced by and Ice.ACM.Client Ice.ACM.Server Ice.ACM.Client.Timeout Ice.ACM.
, respectively.Server.Timeout

With the new heartbeat feature, Ice automatically sends heartbeat messages at regular intervals. You can use this feature in place of a dedicated
background thread that was commonly used in previous versions of Ice for keeping a session or a bidirectional connection active.
It's no longer necessary to disable ACM in clients as long as you enable ACM heartbeats.Glacier2
Server-side ACM is now enabled by default. Like with the previous versions, the default server-side configuration doesn't close idle connections.
However, it now enables heartbeats while incoming requests are pending. This ensures the client doesn't close the connection prematurely while
there are long invocations pending.

Back to Top ^

IceGrid and Glacier2 sessions
The in Ice 3.6 offer new implementation strategies for applications that create Glacier2 or IceGrid sessions. Since a session is tightly bound ACM changes
to a connection, we strongly recommended in prior releases that you disable ACM altogether to avoid the risk of ACM prematurely closing a connection
and consequently terminating a session. As of Ice 3.6, it's no longer necessary to disable ACM in these situations. Furthermore, the addition of ACM
heartbeats means you can remove existing code that creates a background thread just to keep a session alive.

The interface provides several new operations, including the ability to obtain and modify a connection's current ACM settings. If you Ice::Connection
use the Glacier2 helper classes, they call the operations to tailor the ACM timeout and heartbeat based on the router's ACM configuration. Connection
Applications that manually create a Glacier2 session can configure ACM like this:

C++

Glacier2::RouterPrx router = ...
// Create a session...
int acmTimeout = router->getACMTimeout();
if(acmTimeout > 0)
{
 Ice::ConnectionPtr connection = router->ice_getCachedConnection();
 connection->setACM(acmTimeout, IceUtil::None, Ice::HeartbeatAlways);
}

The new operation returns the router's server-side ACM timeout. In this example, the client calls on its Glacier2::Router::getACMTimeout setACM
connection to the router, passing this same timeout value to ensure consistency between client and server. The client also enables automatic heartbeats
so that the connection remains active and prevents the router's server-side ACM from closing the connection.

The ACM improvements include changes to the ACM configuration properties. You can use these properties to achieve the same result as the code
above, however the properties can potentially affect other connections as well.

Finally, another new operation on the interface lets you specify a callback object that will be notified when the connection receives a Connection
heartbeat message, and when the connection closes. This feature can be especially useful for session-based applications that need to closely monitor
their connections.

https://doc.zeroc.com/pages/viewpage.action?pageId=22777090#Ice.Default.*-Ice.Default.InvocationTimeout
https://doc.zeroc.com/display/IceBeta/Automatic+Retries
https://doc.zeroc.com/display/IceBeta/Active+Connection+Management
https://doc.zeroc.com/display/IceBeta/Getting+Started+with+Glacier2
https://doc.zeroc.com/display/IceBeta/Using+Connections

Back to Top ^

Glacier2 compatibility for helper classes
The Glacier2 helper classes in Ice 3.6 now depend on the ACM heartbeat features described above to keep a session alive. This functionality requires a
Glacier2 router that also uses Ice 3.6 or later. If you're upgrading a client to Ice 3.6, we strongly recommend upgrading the Glacier2 router to 3.6 as well.
Using an earlier version of Glacier2 will require your application to manually keep the session alive.

Back to Top ^

SSL changes
IceSSL for C++ has been overhauled to make use of platform-native SSL APIs where possible:

IceSSL on Windows now uses SChannel
IceSSL on OS X now uses Secure Transport
Linux platforms continue to use OpenSSL as in previous releases

As a result, there have been a number of changes to the IceSSL configuration properties and its C++ API. In the , you'll see IceSSL property reference
platform differences marked with , , and , respectively.C++ using Windows C++ using OS X C++ using OpenSSL

We discuss the affected platforms below, along with other general SSL changes.

Back to Top ^

SSLv3 disabled by default

To improve security, IceSSL now disables the SSLv3 protocol by default. In other words, only TLS protocols are enabled by default.

Although we do not recommend it, you can enable SSLv3 using the following settings:

Enable only SSLv3
IceSSL.Protocols=SSL3

Enable SSLv3 and TLS
IceSSL.Protocols=SSL3, TLS1_0, TLS1_1, TLS1_2

OS X only: Enables SSLv3 and TLS
IceSSL.ProtocolVersionMin = "SSLv3"

Refer to for more information on these settings.IceSSL.*

Back to Top ^

Certificate verification

The default value of the property is now three (it was previously two). This allows certificate chains of three certificates, such IceSSL.VerifyDepthMax
as a chain consisting of a peer certificate, a CA certificate, and a Root CA certificate.

The certificate chain provided in should now always include the root certificate if the chain is successfully verified.IceSSL::ConnectionInfo

We also added a member to , which indicates whether or not the peer certificate was successfully verified. For a verified IceSSL::ConnectionInfo
client that sets , this member allows the client to check the verification status of the server's certificate. For server connections, IceSSL.VerifyPeer=0
the member should always be true since servers always reject invalid client certificates.

Back to Top ^

SSL changes on OS X

By using Secure Transport, IceSSL on OS X has now become very similar to IceSSL in Ice Touch. For example, you can use OS X keychains, take
advantage of the system's default graphical password prompt, and use many of the same configuration properties.

General Changes

These changes also affect applications that use Ice for Python, Ice for Ruby, and Ice for PHP because these language mappings are based on
Ice for C++.

https://doc.zeroc.com/pages/viewpage.action?pageId=22777115
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.VerifyDepthMax

Password prompt
In previous releases, OpenSSL would attempt to prompt command-line users for a password if the application failed to define a password or
supply a password callback. Now OS X will use its default graphical password prompt in this situation.

DSA certificates
DSA certificates are no longer supported on OS X. If you used DSA certificates, you will need to generate RSA equivalents. The IceSSL.

property still accepts the same syntax in that it allows you to specify two files (one RSA certificate file and one DSA certificate file), but CertFile
it will ignore the DSA certificate.

MD5 signatures
OS X does not support certificates with MD5 signatures. We recommend using SHA256 instead.

API Changes

Since IceSSL on OS X no longer uses OpenSSL, the native C++ class does not support the and IceSSL::Plugin setContext getContext
methods.

The method has been deprecated. The new method IceSSL::Certificate::verify(const PublicKeyPtr&) IceSSL::
 takes its place.Certificate::verify(const CertificatePtr&)

Property Changes

Keychains
The properties and are now supported on OS X.IceSSL.Keychain IceSSL.KeychainPassword

Certificate authorities
Use the new property to denote a file containing the certificates of your trusted certificate authorities. If you'd rather use the IceSSL.CAs
system's default certificate authorities, enable instead.IceSSL.UsePlatformCAs

Certificates
Use the property to denote a PKCS12 file containing both a certificate and a private key. The property is IceSSL.CertFile IceSSL.KeyFile
now deprecated and should no longer be used to denote a separate private key file.

Certificate queries
The new property lets you query a keychain to find a certificate matching certain criteria. IceSSL.FindCert

Diffie Hellman parameters
The new property allows you to specify the name of a file containing pre-generated Diffie Hellman parameters. The property IceSSL.DHParams I

 is no longer supported on OS X.ceSSL.DH.bits

Protocol limits
The property is no longer supported on OS X for specifying the versions of SSL/TLS that a program will accept. Use the IceSSL.Protocols
new properties and instead. IceSSL.ProtocolVersionMin IceSSL.ProtocolVersionMax

Refer to for information about obsolete properties.deprecated APIs

Back to Top ^

SSL changes on Windows

By using SChannel, IceSSL on Windows has now become very similar to IceSSL for .NET. For example, you can use certificate stores and many of the
same configuration properties.

General Changes

Password prompt
In previous releases, OpenSSL would attempt to prompt command-line users for a password if the application failed to define a password or
supply a password callback. Windows does not have a default password prompt, so this situation will now result in a run-time exception.

Anonymous Diffie Hellman (ADH)
ADH ciphers are no longer supported on Windows.

Certificate formats
Windows is able to load a certificate in PEM format if no password is required. Use the PFX (PKCS#12) format for password-protected certificates
and keys.

API Changes

Since IceSSL on Windows no longer uses OpenSSL, the native C++ class does not support the and IceSSL::Plugin setContext getContext
 methods.

The method has been deprecated. The new method IceSSL::Certificate::verify(const PublicKeyPtr&) IceSSL::
 takes its place.Certificate::verify(const CertificatePtr&)

Property Changes

https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CertFile
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CertFile
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.Keychain
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.KeychainPassword
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CAs
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.UsePlatformCAs
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CertFile
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CertAuthFile
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.FindCert
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.DHParams
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.ProtocolVersionMin
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.ProtocolVersionMax

Certificate authorities
Use the new property to denote a file containing the certificates of your trusted certificate authorities. If you'd rather use the IceSSL.CAs
system's default certificate authorities, enable instead.IceSSL.UsePlatformCAs

Certificates
Use the property to denote a PKCS12 file containing both a certificate and a private key. The property is IceSSL.CertFile IceSSL.KeyFile
now deprecated and should no longer be used to denote a separate private key file.

Certificate queries
The new property lets you query a certificate store to find a certificate matching certain criteria.IceSSL.FindCert

Refer to for information about obsolete properties.deprecated APIs

Back to Top ^

SSL changes on Linux

API Changes

The method has been deprecated. The new method IceSSL::Certificate::verify(const PublicKeyPtr&) IceSSL::
 takes its place.Certificate::verify(const CertificatePtr&)

Property Changes

Certificate authorities
Use the new property to denote a file containing the certificates of your trusted certificate authorities. If you'd rather use the IceSSL.CAs
system's default certificate authorities, enable instead.IceSSL.UsePlatformCAs

Certificates
Use the property to denote a PKCS12 file containing both a certificate and a private key. The property is IceSSL.CertFile IceSSL.KeyFile
now deprecated and should no longer be used to denote a separate private key file.

Refer to for information about obsolete properties.deprecated APIs

Back to Top ^

Collocated Invocation changes
Ice has always supported , where a proxy invocation should ideally have the same semantics regardless of whether the target object location transparency
is on a different host, a different process on the same host, or collocated in the current process. For this latter case, a collocated invocation is defined as a
proxy invocation on a target object that is hosted by an object adapter in the same process and created using the same communicator as the proxy. In
previous versions of Ice, the semantics of collocated invocations differed in several ways from regular "remote" invocations:

Classes and exceptions were never sliced. Instead, the receiver always received a class or exception as the derived type that was sent by the
sender.
If a collocated invocation threw an exception that was not in an operation's exception specification, the original exception was raised in the client
instead of . (This applied to the C++ mapping only.)UnknownUserException
Class factories were ignored.
Invocation timeouts were ignored.
If an operation implementation used an in parameter that was passed by reference as a temporary variable, the change affected the value of the
in parameter in the caller (instead of modifying a temporary copy of the parameter on the callee side only).
Asynchronous semantics were not supported for collocated invocations.

Ice 3.6 eliminates all of these differences. Most notably, you can now use the asynchronous invocation API on a collocated servant, and collocated
invocations are now supported in Python.

Note however that a few differences in semantics still remain:

Most collocated invocations are dispatched in the server-side thread pool just like regular invocations; the only exceptions are synchronous
twoway collocated invocations with no invocation timeout, which are dispatched in the calling thread.
The state of the servant's object adapter is ignored: collocated invocations proceed normally even if the servant's adapter is not yet activated or is
in the holding state.
AMI callbacks for asynchronous collocated invocations are dispatched from the servant's thread and not from the client-side thread pool unless
AMD is used for the servant dispatch. In this case, the AMI callback is called from the client-side thread pool.
Invocation timeouts work as usual, but connection timeouts are ignored.

If your application relies on collocated invocations, test it carefully with Ice 3.6 to ensure that it still behaves as expected.

Back to Top ^

Batch Invocation changes

https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CAs
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.UsePlatformCAs
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CertFile
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CertAuthFile
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.FindCert.location.name
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CAs
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.UsePlatformCAs
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CertFile
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CertAuthFile
https://doc.zeroc.com/display/IceBeta/Collocated+Invocation+and+Dispatch

We made some significant changes to the way work in Ice 3.6. The following table compares the behavior of batch invocations between batch invocations
previous releases and Ice 3.6:

Batch invocation behavior in Ice 3.5
and earlier

Batch invocation behavior in Ice 3.6

A batch request is queued by the connection
associated with the proxy.

A batch request is queued by the proxy used for the invocation. The only exception is for a , fixed proxy
in which case batch requests continue to be queued by the connection associated with the proxy.

If a proxy was not already associated with a
connection, the initial batch request could
trigger a connection attempt.

A batch request does not trigger any network activity.

Calling Communicator::
 flushes all queued flushBatchRequests

requests for all connections.

Calling only flushes queued requests invoked using fixed Communicator::flushBatchRequests
proxies.

Calling Connection::
 flushes queued flushBatchRequests

requests for all proxies associated with that
connection.

Calling only flushes queued requests invoked using fixed Connection::flushBatchRequests
proxies associated with that connection.

A batch of requests is compressed when at
least one of the proxies used to create the
requests in this batch has compression
enabled.

A batch of requests is compressed when the proxy used to flush this batch has compression enabled.
Batched requests flushed through or Communicator::flushBatchRequests Connection::

 never use compression.flushBatchRequest

Batch requests are not affected by proxy
lifecycles because the requests are queued
by connections.

Batch requests queued by a proxy are discarded when the proxy is deallocated.

Batch requests could be silently lost if an
error occurred during a flush.

Calling on a regular (non-fixed) proxy behaves like a oneway request: ice_flushBatchRequests
failures that occur during network activity trigger automatic retries and can eventually raise an
exception. Furthermore, the callback is invoked for asynchronous calls to sent ice_flushBatchRequ

.ests

With these changes, Ice's batch invocation facility has become more reliable and behaves more consistently with other invocation modes.

To give you more control over batch requests, we've also added a new API. You can configure a communicator with a custom batch BatchInterceptor
interceptor in order to implement your own auto-flush algorithms or to receive notification when an auto-flush fails.

Back to Top ^

Logger changes
We added a new operation to the local interface .getPrefix Logger

Slice

module Ice {
local interface Logger {
...
 string getPrefix();
};
};

If you implement your own logger, you will need to update your implementation with a new . returns the prefix associated with this getPrefix getPrefix
logger.

Back to Top ^

Crypt Password changes
Both the Glacier2 router and IceGrid registry provide a using a "crypt password" file that contains a list of user simple file-based authentication mechanism
name and password-hash pairs. In Ice 3.5 and earlier releases, the Glacier2 router and IceGrid registry use the archaic algorithm to DES-based Unix Crypt
hash the provided password and verify if this hash matches the hash in the password-file.

Ice 3.6 no longer supports this hash format on Windows and OS X. As a result, you need to regenerate your crypt password files on these platforms when
upgrading to Ice 3.6.

https://doc.zeroc.com/display/IceBeta/Batched+Invocations
https://doc.zeroc.com/display/IceBeta/Terminology#Terminology-fixed
https://doc.zeroc.com/display/IceBeta/Getting+Started+with+Glacier2#GettingStartedwithGlacier2-WritingaPasswordFile
https://pythonhosted.org/passlib/lib/passlib.hash.des_crypt.html

Back to Top ^

C++ changes

Garbage collection changes

We've made significant changes to the garbage collection facility for cyclic object graphs. If your application uses this facility, note that we've removed the
following:

Ice.GC.Interval property
Ice.Trace.GC property
Ice::collectGarbage() function

The new property determines whether garbage collection is enabled by default for Slice class instances that are unmarshaled by Ice.CollectObjects
the Ice run time. Refer to the discussion for more information on using this feature.garbage collection

Back to Top ^

String converter changes

A number of changes have been made to the C++ string conversion API in this release:

The and members of have been removed. Applications should use the stringConverter wstringConverter Ice::InitializationData
 API instead.process-wide string converter

The classes and functions have moved from the namespace to the namespace.Ice IceUtil
Overloaded versions of the and that accepted a communicator argument have been nativeToUTF8 UTF8ToNative convenience functions
removed.
The arguments have changed for the and .stringToWstring wstringToString convenience functions

Back to Top ^

OS X with C++

C++ developers on OS X need to be aware of several changes:

C++11 libraries
With Ice 3.5, C++11 applications needed to link with a separate set of C++11-specific Ice libraries located in <Ice installation directory>

. The Ice 3.6 binary distribution includes a single set of libraries that also support C++11, so you'll need to modify your application's /lib/c++11
library path to use instead.<Ice installation directory>/lib

Minimum required version
Ice 3.6 supports OS X 10.9 and 10.10, therefore the C++ libraries in the Ice binary distribution are built with . macosx-min-version=10.9
Consequently, these libraries require and are not compatible with .libc++ libstdc++

Back to Top ^

Java changes

Java mapping changes

The default constructor generated for Slice structures, exceptions and classes behaves differently for Ice 3.6 than in previous releases. Specifically, the
default constructor now initializes string data members to an empty string, enumerator data members to the first enumerator in the enumeration, and
structure data members to a default-constructed value.

In previous releases, the default constructor initialized these data members to null. Applications that depend on this behavior will require updating.

For situations where the overhead of default-constructing structure data members is undesirable, applications can call the one-shot constructor instead.

The Java mapping has also relaxed its marshaling prerequisites: it is no longer necessary to initialize data members of type structure or enumerator prior
to an invocation. In Ice 3.6, passing a null value for a structure or enumerator causes Ice to marshal a default-constructed structure or the first enumerator,
respectively.

Back to Top ^

New Java features

https://doc.zeroc.com/display/IceBeta/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.CollectObjects
https://doc.zeroc.com/display/IceBeta/Smart+Pointers+for+Classes#SmartPointersforClasses-garbage
https://doc.zeroc.com/pages/viewpage.action?pageId=22776158
https://doc.zeroc.com/pages/viewpage.action?pageId=22776162
https://doc.zeroc.com/pages/viewpage.action?pageId=22776162

We have added several features that you may wish to incorporate into your Java application:

Interrupts
Buffers
Java 8 and lambdas

Back to Top ^

C# changes

C# mapping changes

The default constructor generated for Slice structures, exceptions and classes behaves differently for Ice 3.6 than in previous releases. Specifically, the
default constructor now initializes string data members to an empty string and structure data members to a default-constructed value.

In previous releases, the default constructor did not explicitly initialize these data members and so they had the default C# values. Applications that
depend on this behavior will require updating.

For situations where the overhead of default-constructing structure data members is undesirable, applications can call the one-shot constructor instead.

The C# mapping has also relaxed its marshaling prerequisites: it is no longer necessary to initialize data members of type structure prior to an invocation.
In Ice 3.6, passing a null value for a structure causes Ice to marshal a default-constructed structure.

Back to Top ^

C# serialization changes

One of the new features in Ice 3.6 is support for .NET serialization for all Slice types (except proxies). Existing applications may be affected by this change
because the type now implements and the serialized format of an optional value is different than in Ice 3.5.Ice.Optional ISerializable

Back to Top ^

Python changes
Developers who are migrating existing Ice applications from Ice 3.5 should be aware of a change that affects the Python language mapping. The Ice.

 value now has semantics, making it more convenient to test whether an optional Slice data member has a value:Unset False

Python

Only valid with Ice 3.6!
if obj.optionalMember:
 # optionalMember has a value

With Ice 3.5, the code above would not have the intended behavior because the test would be true even when is set to . optionalMember Ice.Unset
The correct way to write this using Ice 3.5 is shown below:

Python

Correct test with Ice 3.5
if obj.optionalMember is not Ice.Unset:
 # optionalMember has a value

This code will also have the correct behavior with Ice 3.6, but the new style is easier to read. Also note that the Ice 3.6 semantics mean you need to use
caution for optional values that can legally be set to :None

Python

if obj.optionalMember: # Fails for None AND Ice.Unset!
 # optionalMember is not Ice.Unset or None

You can distinguish between and as follows:Ice.Unset None

https://doc.zeroc.com/display/IceBeta/New+Features+in+Ice+3.7#NewFeaturesinIce3.7-interrupt
https://doc.zeroc.com/display/IceBeta/New+Features+in+Ice+3.7#NewFeaturesinIce3.7-buffer
https://doc.zeroc.com/display/IceBeta/New+Features+in+Ice+3.7#NewFeaturesinIce3.7-lambda

Python

if obj.optionalMember is Ice.Unset:
 # optionalMember is unset
elif obj.optionalMember is None:
 # optionalMember is set to None
else:
 # optionalMember is set to a value other than None

We recommend that you review for correctness all uses of and tests of optional data members.Ice.Unset

Back to Top ^

PHP changes
No changes to the PHP mapping in Ice 3.6 affect compatibility for existing applications.

Back to Top ^

Ruby changes
No changes to the Ruby mapping in Ice 3.6 affect compatibility for existing applications.

Back to Top ^

JavaScript changes

JavaScript mapping changes

The default constructor generated for Slice structures, exceptions and classes behaves differently for Ice 3.6 than in previous releases. Specifically, the
default constructor now initializes string data members to an empty string and structure data members to a default-constructed value.

In previous releases, the default constructor initialized these data members to null. Applications that depend on this behavior will require updating.

For situations where the overhead of default-constructing structure data members is undesirable, applications can call the one-shot constructor instead.

The JavaScript mapping has also relaxed its marshaling prerequisites: it is no longer necessary to initialize data members of type structure or enumerator
prior to an invocation. In Ice 3.6, passing a null value for a structure or enumerator causes Ice to marshal a default-constructed structure or the first
enumerator, respectively.

Back to Top ^

JavaScript packaging changes

The NodeJS packaging has changed from the original Ice for JavaScript 0.1 release, meaning existing JavaScript applications will need to modify their req
 statements. All of the top-level Ice modules (Ice, Glacier2, etc.) are now accessible by including the package:uire ice

JavaScript

var Ice = require("ice").Ice;
var Glacier2 = require("ice").Glacier2;
// ...

Loading the generated code for your own Slice definitions looks similar. Suppose we have the following definitions in :Hello.ice

Slice

module Demo {
interface Hello {
 idempotent void sayHello(int delay);
 void shutdown();
};
};

To make the module conveniently accessible in our code, we can write:Demo

JavaScript

var Demo = require("Hello").Demo;
var proxy = Demo.HelloPrx.uncheckedCast(...);

Nothing has changed for browser-based JavaScript applications, where loading adds the Ice definitions to the global window object, and other Ice Ice.js
modules (, etc.) must be loaded individually.Glacier2.js

Note that Ice 3.6 adds support for the WebSocket transport to the Ice core, and includes new implementations of the WebSocket transport in Java and C#.
This means you no longer need to use Glacier2 as an intermediary if your JavaScript client needs to communicate with a Java or C# server.

Back to Top ^

Objective-C changes
The default method and convenience constructor generated for Slice structures, exceptions and classes behave differently for Ice 3.6 than in init
previous releases. Specifically, these methods now initialize string data members to an empty string, enumerator data members to the first enumerator,
and structure data members to a default-constructed value.

In previous releases, the default constructor zero-initialized these data members. Applications that depend on this behavior will require updating.

For situations where the overhead of default-constructing structure data members is undesirable, applications can call the one-shot constructor instead.

The Objective-C mapping has also relaxed its marshaling prerequisites: it is no longer necessary to initialize data members of type structure prior to an
invocation. In Ice 3.6, passing a null value for a structure causes Ice to marshal a default-constructed structure.

Back to Top ^

Ubuntu packages
Users of Ice 3.5 on Ubuntu had the choice of using Debian's packages or ZeroC's own experimental packages. We called them "experimental" because
we expected we might eventually change the packaging structure, and in fact we have for Ice 3.6.changed the structure

Upgrading an existing installation of the ZeroC packages for Ice 3.5 on Ubuntu to Ice 3.6 is relatively straightforward. First add the Ice repository to the
system and update the package list:

$ sudo apt-add-repository "deb stable main"http://zeroc.com/download/Ice/3.6/ubuntu14.04

$ sudo apt-get update

To upgrade all of the run-time packages:

$ sudo apt-get install zeroc-ice-all-runtime

To upgrade all of the development packages:

$ sudo apt-get install libzeroc-ice-dev libzeroc-ice-java zeroc-ice-all-dev

Refer to our page for details on the individual packages.binary distribution

Back to Top ^

Migrating IceGrid databases from Ice 3.5

https://doc.zeroc.com/display/IceBeta/Using+the+Linux+Binary+Distributions
https://doc.zeroc.com/display/IceBeta/Using+the+Linux+Binary+Distributions

Ice 3.6 supports the migration of IceGrid databases from Ice 3.3, 3.4 and 3.5. To migrate from earlier Ice versions, you will first need to migrate the
databases to the Ice 3.3 format. If you require assistance with such migration, please contact .support@zeroc.com

To migrate, first stop the IceGrid registry you wish to upgrade.

Next, copy the IceGrid database environment to a second location:

$ cp -r db recovered.db

Locate the correct version of the Berkeley DB recovery tool (usually named). It is essential that you use the executable that db_recover db_recover
matches the Berkeley DB version of your existing Ice release. For Ice 3.3, use from Berkeley DB 4.6. For Ice 3.4, use from db_recover db_recover
Berkeley DB 4.8. For Ice 3.5, use from Berkeley DB 5.3. You can verify the version of your tool by running it with the option:db_recover db_recover -V

$ db_recover -V

Now run the utility on your copy of the database environment:

$ db_recover -h recovered.db

Change to the location where you will store the database environments for IceGrid 3.6:

$ cd <new-location>

Next, run the utility located in the directory of your Ice distribution (or in if using an RPM upgradeicegrid36.py config /usr/share/Ice-3.6
installation). The first argument is the path to the old database environment. The second argument is the path to the new database environment.

In this example we'll create a new directory in which to store the migrated database environment:db

$ mkdir db
$ upgradeicegrid36.py <path-to-recovered.db> db

Upon completion, the directory contains the migrated IceGrid databases.db

By default, the migration utility assumes that the servers deployed with IceGrid also use Ice 3.6. If your servers still use an older Ice version, you need to
specify the command-line option when running :--server-version upgradeicegrid36.py

$ upgradeicegrid36.py --server-version 3.5.1 <path-to-recovered.db> db

The migration utility will set the attribute to the specified version and the IceGrid registry will generate configuration files descriptorserver ice-version
compatible with the given version.

If you are upgrading the master IceGrid registry in a replicated environment and the slaves are still running, you should first restart the master registry in
read-only mode using the option, for example:--readonly

$ icegridregistry --Ice.Config=config.master --readonly

Next, you can connect to the master registry with or the IceGrid administrative GUI from Ice 3.6 to ensure that the database is correct. If icegridadmin
everything looks fine, you can shutdown and restart the master registry without the option.--readonly

IceGrid slaves from Ice 3.3, 3.4 or 3.5 won't interoperate with the IceGrid 3.6 master. You can leave them running during the upgrade of the master to not
interrupt your applications. Once the master upgrade is done, you should upgrade the IceGrid slaves to Ice 3.6 using the instructions above.

Back to Top ^

Migrating IceStorm databases from Ice 3.5
No changes were made to the database schema for IceStorm in this release. Furthermore, Ice 3.5 and Ice 3.6 use the same version of Berkeley DB
(Berkeley DB 5.3.x). You can use IceStorm databases created with Ice 3.5 with Ice 3.6 without any transformation.

Back to Top ^

Migrating Freeze databases from Ice 3.5
No changes were made that would affect the content of your databases. Furthermore, Ice 3.5 and Ice 3.6 use the same version of Berkeley DB Freeze
(Berkeley DB 5.3.x). You can use Freeze databases created with Ice 3.5 with Ice 3.6 without any transformation.

Back to Top ^

Migrating Android applications from Ice 3.5
Our recommended development environment for Android applications is . Refer to the page appropriate for Android Studio Using the Binary Distribution
your platform for instructions on configuring a project in Android Studio.

Back to Top ^

mailto:support@zeroc.com
http://doc.zeroc.com/display/Ice35/Server+Descriptor+Element
https://doc.zeroc.com/display/Freeze37/Freeze+Manual
http://developer.android.com/tools/studio/index.html

Changed APIs
This section describes APIs whose semantics have changed, potentially in ways that are incompatible with previous releases.

The following APIs were changed in Ice 3.6:

String conversion in C++
Several changes were made to the API in C++.string conversion

IceSSL
The native changed on some platforms.IceSSL APIs

C++ garbage collection
The function was removed and replaced by a new facility. Ice::collectGarbage garbage collection

Back to Top ^

Removed APIs
This section generally describes APIs that were deprecated in a previous release and have now been removed. Your application may no longer compile or
operate successfully if it relies on one of these APIs.

The following APIs were removed in Ice 3.6:

Deprecated API for asynchronous method invocations (AMI)
This API, which uses proxy operations such as , was deprecated in Ice 3.4 and is no longer available. The new API should be sayHello_async
used instead. Refer to the appropriate language mapping section for more information.

Stats facility
This functionality was deprecated in Ice 3.5 and is now provided by the and the .Instrumentation facility Metrics facet

Ice.GC.Interval
Ice.Trace.GC
Ice::collectGarbage()
Significant changes were made to the C++ garbage collection facility.

Ice.MonitorConnections
This setting is no longer necessary.

IceSSL::Plugin::setContext()
IceSSL::Plugin::getContext()
These C++ methods are no longer available on Windows or OS X.

Ice::InitializationData::stringConverter
Ice::InitializationData::wstringConverter
These C++ data members are no longer available. Use and IceUtil::setProcessStringConverter IceUtil::

 instead.setProcessWstringConverter

Ice::Router::addProxy()
IceGrid::Admin::writeMessage()
IceStorm::Topic::subscribe()
These Slice operations were deprecated in previous Ice releases.

IceUtil.Version
This Java class was deprecated in previous Ice releases. Use and instead.Ice.Util.stringVersion() Ice.Util.intVersion()

Ice::Object::ice_getHash()
This C++ method was deprecated in Ice 3.5.

IcePatch2.ChunkSize
IcePatch2.Directory
IcePatch2.Remove
IcePatch2.Thorough
These properties were deprecated in previous Ice releases and replaced by properties that use the prefix .IcePatch2Client

Glacier2.AddSSLContext
This property was deprecated in Ice 3.3.1 and replaced by .Glacier2.AddConnectionContext

The following components were removed in Ice 3.6:

Qt SQL database plug-ins for IceGrid and IceStorm, which were deprecated in Ice 3.5.
Freeze is now the only persistence mechanism for these services.

https://doc.zeroc.com/display/IceBeta/Instrumentation+Facility
https://doc.zeroc.com/display/IceBeta/The+Metrics+Facet

Back to Top ^

Deprecated APIs
This section discusses APIs and components that are now deprecated. These APIs will be removed in a future Ice release, therefore we encourage you to
update your applications and eliminate the use of these APIs as soon as possible.

The following APIs were deprecated in Ice 3.6:

Ice.ACM.Client
Ice.ACM.Server
Use and instead. See for more information.Ice.ACM.Client.Timeout Ice.ACM.Server.Timeout Active Connection Management

IceSSL.CertAuthFile
Use the new property to specify the path name of a PEM file containing the Root Certificate Authorities.IceSSL.CAs

IceSSL.CertAuthDir (OpenSSL only)
Use the new property to specify the path name of a directory containing the Root Certificate Authorities.IceSSL.CAs

IceSSL.KeyFile
Use to configure the IceSSL identity using a PKCS12 file.IceSSL.CertFile

IceSSL.ImportCert.* (.NET only)
This property caused the IceSSL plug-in to import a certificate into a Windows certificate store. Going forward, users will need to install
certificates in a store using Windows-provided tools if necessary. However, it is now possible to use trusted CA certificates from a file without
loading them into a store. See for more information.IceSSL.CAs

IceSSL.PersistKeySet (.NET only)
Only used by the now-deprecated property.IceSSL.ImportCert

IceSSL.KeySet (.NET only)
Use instead.IceSSL.CertStoreLocation

IceSSL::Certificate::verify (C++ only)
The method has been deprecated. The new method takes its place.verify(const PublicKeyPtr&) verify(const CertificatePtr&)

IceBox.InstanceName
IceBox.ServiceManager.AdapterProperty
These properties are no longer necessary because their functionality is provided by the .service manager administrative facet

clr:collection
Ice.CollectionBase
Ice.DictionaryBase
The metadata tag, along with the C# classes and , were originally provided clr:collection Ice.CollectionBase Ice.DictionaryBase
for backward compatibility with Ice versions prior to 3.3 and are now deprecated. Existing applications should migrate their code to use the
standard C# collection types.

Ice::StringConverterPlugin (C++ only)
The base class is deprecated. You should use a regular to install your string converter(s).StringConvererPlugin Ice::Plugin

Ice::CollocatedOptimizationException
This exception is no longer used now that have become much more flexible.collocated invocations

Ice.BatchAutoFlush
This property controlled whether the Ice run time would automatically flush batch requests for a connection after enough requests had been
queued to reach the limit established by . We're deprecating this property in favor of a new one, Ice.MessageSizeMax Ice.

, whose value Ice now uses as the limit for automatic flushing. If your application sets to BatchAutoFlushSize Ice.BatchAutoFlush=0
disable automatic flushing, you can achieve the same behavior by setting .Ice.BatchAutoFlushSize=0

Back to Top ^

Visual C++ compiler warnings
The Ice 3.5 header files downgrade the following Visual C++ warnings to level 4:

C++

pragma warning(4 : 4250) // ... : inherits ... via dominance
pragma warning(4 : 4251) // class ... needs to have dll-interface to be used by clients of class ...

This downgrade affects any file that includes these Ice header files.

https://doc.zeroc.com/display/IceBeta/Active+Connection+Management
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CAs
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CAs
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CertFile
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CAs
https://doc.zeroc.com/pages/viewpage.action?pageId=22777115#IceSSL.*-IceSSL.CertStoreLocation
https://doc.zeroc.com/display/IceBeta/IceBox+Administration
https://doc.zeroc.com/display/IceBeta/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.BatchAutoFlushSize
https://doc.zeroc.com/display/IceBeta/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.BatchAutoFlushSize

Ice 3.6 no longer disables or downgrades any warning in your C++ code. As a result, when upgrading to Ice 3.6, your Ice application may produce
compiler warnings that were not reported before. To eliminate these warnings, you can modify your source code, add or i pragmas disable these warnings
n your Visual Studio projects.

Back to Top ^

https://msdn.microsoft.com/en-us/library/2c8f766e.aspx
https://msdn.microsoft.com/en-us/library/thxezb7y.aspx

	Upgrading your Application from Ice 3.5

