
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Connection Timeouts
A synchronous remote invocation does not complete on the client side until the server has finished processing it. Occasionally, it is useful to be able
to force an invocation to terminate after some time, even if it has not completed. The is provided for this purpose. The ice_timeout factory method
Slice definition of would look as follows:ice_timeout

Slice

Object* ice_timeout(int t);

This method returns a new proxy with the configured timeout. For example:

C++

Filesystem::FilePrx myFile = ...;
FileSystem::FilePrx timeoutFile = myFile->ice_timeout(5000);

try {
 Lines text = timeoutFile->read(); // Read with timeout
} catch(const Ice::TimeoutException&) {
 cerr << "invocation timed out" << endl;
}

Lines text = myFile->read(); // Read without timeout

The parameter to determines the timeout value in milliseconds. A value of indicates no timeout. In the preceding example, the ice_timeout -1
timeout is set to five seconds; if an invocation of via the proxy does not complete within five seconds, the operation terminates read timeoutFile
with an . On the other hand, invocations via the proxy are unaffected by the timeout, that is, sets Ice::TimeoutException myFile ice_timeout
the timeout on a per-proxy basis.

The timeout value set on a proxy affects all networking operations: reading and writing of data as well as opening and closing of connections. If any
of these operations does not complete within the timeout, the client receives an exception. Note that, if the Ice run time encounters a recoverable
error condition and transparently retries an invocation, this means that the timeout applies separately to each attempt. Similarly, if a large amount of
data is sent with an operation invocation in several system calls, the timeout applies to each write, not to the invocation overall.write

Timeouts that expire during reading or writing of data are indicated by a . For opening and closing of connections, the Ice run TimeoutException
time uses more specific exceptions:

ConnectTimeoutException
This exception indicates that a connection could not be established within the specified time.

CloseTimeoutException
This exception indicates that a connection could not be closed within the specified time.

An application normally configures a proxy's timeout using the method. However, a proxy that originated from a string may already ice_timeout
have a timeout specified, as shown in the following example:

C++

string s = "ident:tcp -h somehost -t 5000:ssl -h somehost -t 5000";

In this case, both the TCP and SSL endpoints define a timeout of five seconds. When the Ice run time establishes a connection using one of these
endpoints, it uses the endpoint's timeout unless one was specified explicitly via .ice_timeout

The Ice run time also supports two configuration properties that override the timeouts of every proxy regardless of the settings established via ice_ti
 or the options defined in stringified proxies:meout

Ice.Override.ConnectTimeout
This property defines a timeout that is only used for connection establishment. If not defined, its default value is (no timeout). If a proxy -1
has multiple endpoints, the timeout applies to each endpoint separately.

Ice.Override.Timeout
This property defines the timeout for invocations. If no value is defined for , the value of Ice.Override.ConnectTimeout Ice.

 is also used as the timeout for connection establishment. If not defined, the default value is (no timeout).Override.Timeout -1

https://doc.zeroc.com/display/Ice34/Proxy+Methods

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

If you are considering the use of timeouts, please keep the following limitations in mind:

Timeouts are "soft" timeouts, in the sense that they are not precise, real-time timeouts. (The precision is limited by the capabilities of the
underlying operating system.)
Timeouts are considered fatal error conditions by the Ice run time and result in connection closure on the client side. Furthermore, any other
requests pending on the also fail with an exception.same connection
Timeouts are meant to be used to prevent a client from blocking indefinitely in case something has gone wrong with the server; they are not
meant as a mechanism to routinely abort requests that take longer than intended.
Be careful when using .timeouts with Glacier2

See Also

Proxy Methods
Connection Establishment

https://doc.zeroc.com/display/Ice34/Connection+Establishment
https://doc.zeroc.com/display/Ice34/Glacier2+Session+Management#Glacier2SessionManagement-invocation
https://doc.zeroc.com/display/Ice34/Proxy+Methods
https://doc.zeroc.com/display/Ice34/Connection+Establishment

	Connection Timeouts

