Ice 3.5.1 Documentation

Using Connections

Applications can gain access to an Ice object representing an established connection.

On this page:

® The Connection Interface
o Flushing Batch Requests for a Connection
® The Endpoint Interface
© Opaque Endpoints
® Client-Side Connection Usage
® Server-Side Connection Usage
® Closing a Connection
o Graceful Closure
© Forceful Closure

The Connect i on Interface

The Slice definition of the Connect i on interface is shown below:

Slice

nmodul e Ice {
I ocal class Connectionlnfo {
bool i ncom ng;
string adapt er Name;

1

local interface Connection {
voi d cl ose(bool force);
oj ect* createProxy(ldentity id);
voi d set Adapt er (Obj ect Adapt er adapter);
oj ect Adapt er get Adapter();
Endpoi nt get Endpoi nt () ;
voi d flushBat chRequests();
string type();
int tinmeout();
string toString();
Connectionlnfo getinfo();

}s

I ocal class | PConnectionlnfo extends Connectionlnfo {
string | ocal Address;
int |ocal Port;
string renoteAddress;
int renotePort;

b
I ocal class TCPConnectionlnfo extends |PConnectionlnfo {};

I ocal class UDPConnectionl nfo extends |PConnectionlnfo {
string ntast Address;
int ntastPort;
I
s

nodul e I ceSSL {
I ocal class Connectionlnfo extends |ce::|PConnectionlinfo {
string cipher;
Ice::StringSeq certs;
i
b

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

As indicated in the Slice definition, a connection is a local interface, similar to a communicator or an object adapter. A connection therefore is only
usable within the process and cannot be accessed remotely.

The Connect i on interface supports the following operations:

® void cl ose(bool force)
Explicitly closes the connection. The connection is closed gracefully if f or ce is false, otherwise the connection is closed forcefully.

® (bject* createProxy(ldentity id)
Creates a special proxy that only uses this connection. This operation is primarily used for bidirectional connections.

® void set Adapt er (Obj ect Adapt er adapter)
Associates this connection with an object adapter to enable a bidirectional connection.

® (bj ect Adapt er get Adapter()
Returns the object adapter associated with this connection, or nil if no association has been made.

® Endpoi nt get Endpoi nt ()
Returns an Endpoi nt object.

® void flushBat chRequests()
Flushes any pending batch requests for this connection.

® string type()
Returns the connection type as a string, suchas "t cp"”.

® int timeout()
Returns the timeout value used when the connection was established.

® string toString()
Returns a readable description of the connection.

® Connectionlnfo getlnfo()
This operation returns a Connect i onl nf o class defined as follows:

Slice

local class Connectionlnfo {
bool i ncom ng;
string adapterNane;

}

The i ncom ng member is true if the connection is an incoming connection and false, otherwise. If i nconi ng is true, adapt er Nane
provides the name of the object adapter that accepted the connection. Note that the object returned by get | nf o implements a more derived
interface, depending on the connection type. You can down-cast the returned class instance and access the connection-specific information
according to the type of the connection.

Flushing Batch Requests for a Connection

The f | ushBat chRequest s operation blocks the calling thread until any batch requests that are queued for a connection have been successfully
written to the local transport. To avoid the risk of blocking, you can also invoke this operation asynchronously using the begi n_f | ushBat chReques
t s method (in those language mappings that support it).

Since batch requests are inherently oneway invocations, the begi n_f | ushBat chRequest s method does not support a request callback. However,
you can use the exception callback to handle any errors that might occur while flushing, and the sent callback to receive naotification that the batch
request has been flushed successfully.

For example, the code below demonstrates how to flush batch requests asynchronously in C++:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Local+Types
https://doc.zeroc.com/display/Ice35/Bidirectional+Connections
https://doc.zeroc.com/display/Ice35/Bidirectional+Connections
https://doc.zeroc.com/display/Ice35/Connection+Timeouts

Ice 3.5.1 Documentation

C++

class FlushCal |l back : public IceUtil:: Shared

{
public:
voi d exception(const |ce::Exception& ex)
{
cout << "Flush failed: " << ex << endl;
}
voi d sent (bool sent Synchronously)
{
cout << "Batch sent!" << endl;
}
s

typedef Ilceltil::Handl e<Fl ushCal | back> Fl ushCal | backPtr;

voi d flushConnection(const |ce:: ConnectionPtr& conn)
{
Fl ushCal | backPtr f = new Fl ushCal | back;
I ce:: Cal | back_Connecti on_fl ushBat chRequestsPtr cb =
I ce:: newCal | back_Connecti on_f | ushBat chRequest s(

f, &FlushCal | back: : exception, &FlushCall back::sent);

conn- >begi n_f | ushBat chRequest s(cb) ;

For more information on asynchronous invocations, please see the relevant language mapping chapter.

The Endpoi nt Interface

The Connecti on: : get Endpoi nt operation returns an interface of type Endpoi nt :

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Slice

nmodul e Ice {
const short TCPEndpoi nt Type =
const short UDPEndpoi nt Type = 3;

|
=

local class Endpointinfo {
int tinmeout;
bool conpress;
short type();
bool datagran();
bool secure();

1

local interface Endpoint {
Endpoi ntInfo getinfo();
string toString();

b

I ocal class | PEndpointlnfo extends Endpointlnfo {
string host;
int port;

b
I ocal class TCPEndpoi ntlnfo extends | PEndpointlnfo {};

I ocal class UDPEndpointlnfo extends |PEndpointinfo {
byt e protocol Myj or;
byt e protocol M nor;
byt e encodi ngMgj or;
byt e encodi ngM nor;
string ntastlnterface;
int ncastTtl;

1

| ocal cl ass OpaqueEndpointlnfo extends Endpointlnfo {
I ce:: ByteSeq rawBytes;
b
b

nodul e I ceSSL {
const short Endpoi nt Type = 2;

I ocal class Endpointlnfo extends |ce::|PEndpointlinfo {};

}

The get | nf o operation returns an Endpoi nt | nf o instance. Note that the object returned by get | nf o implements a more derived interface,
depending on the endpoint type. You can down-cast the returned class instance and access the endpoint-specific information according to the type of
the endpoint, as returned by the t ype operation.

The t i mreout member provides the timeout in milliseconds. The conpr ess member is true if the endpoint uses compression (if available). The dat a
gr amoperation returns true if the endpoint is for a datagram transport, and the secur e operation returns true if the endpoint uses SSL.

The derived classes provide further detail about the endpoint according to its type.

Opaque Endpoints

An application may receive a proxy that contains an endpoint whose type is unrecognized by the Ice run time. In this situation, Ice preserves the
endpoint in its encoded (opaque) form so that the proxy remains intact, but Ice ignores the endpoint for all connection-related activities. Preserving
the endpoint allows an application to later forward that proxy with all of its original endpoints to a different program that might support the endpoint
type in question.

Although a connection will never return an opaque endpoint, it is possible for a program to encounter an opaque endpoint when iterating over the
endpoints returned by the proxy method i ce_get Endpoi nt s.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Protocol+Compression
https://doc.zeroc.com/display/Ice35/Datagram+Invocations
https://doc.zeroc.com/display/Ice35/IceSSL
https://doc.zeroc.com/display/Ice35/Proxy+Methods

Ice 3.5.1 Documentation

As a practical example, consider a program for which the IceSSL plug-in is not configured. If this program receives a proxy containing an SSL
endpoint, Ice treats it as an opaque endpoint such that calling get | nf o on the endpoint object returns an instance of OpaqueEndpoi nt | nf o.

Note that the t ype operation of the OpaqueEndpoi nt | nf o object returns the actual type of the endpoint. For example, the operation returns the
value 2 if the object encodes an SSL endpoint. As a result, your program cannot assume that an Endpoi nt | nf o object whose type is 2 can be
safely down-cast to | ceSSL: : Endpoi nt | nf o; if the lceSSL plug-in is not configured, such a down-cast will fail because the object is actually an
instance of OpaqueEndpoi nt | nf o.

Client-Side Connection Usage

Clients obtain a connection by using one of the proxy methods i ce_get Connecti on ori ce_get CachedConnect i on. If the proxy does not yet
have a connection, the i ce_get Connect i on method immediately attempts to establish one. As a result, the caller must be prepared to handle conn
ection failure exceptions. Furthermore, if the proxy denotes a collocated object and collocation optimization is enabled, calling i ce_get Connecti on
results in a Col | ocati onOpti nmi zati onExcepti on.

If you wish to obtain the proxy's connection without the potential for triggering connection establishment, call i ce_get CachedConnect i on; this
method returns null if the proxy is not currently associated with a connection or if connection caching is disabled for the proxy.

As an example, the C++ code below illustrates how to obtain a connection from a proxy and print its type:

C++

Ice::bjectPrx proxy = ...
try
{

I ce:: ConnectionPtr conn = proxy->i ce_get Connection();
cout << conn->type() << endl;

}
catch(const Ice:: Col |l ocationOptini zati onExcepti on&)
{
cout << "collocated" << endl;
}

Server-Side Connection Usage

Servers can access a connection via the con member of the | ce: : Curr ent parameter passed to every operation. For collocated invocations, con
has a nil value.

For example, this Java code shows how to invoke t oSt ri ng on the connection:

Java

public int add(int a, int b, Ice.Current curr)

{
if (curr.con != null)
{
System out. println("Request received on connection:\n" + curr.con.toString());
}
el se
{
System out.println("collocated invocation");
}
return a + b;
}

Although the mapping for the Slice operation t oSt r i ng results in a Java method named _t oSt ri ng, the Ice run time implements t oSt ri ng to
return the same value.

Closing a Connection

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/IceSSL
https://doc.zeroc.com/display/Ice35/Proxy+Methods
https://doc.zeroc.com/display/Ice35/Connection+Establishment#ConnectionEstablishment-error
https://doc.zeroc.com/display/Ice35/Connection+Establishment#ConnectionEstablishment-error
https://doc.zeroc.com/display/Ice35/Location+Transparency
https://doc.zeroc.com/display/Ice35/The+Current+Object

Ice 3.5.1 Documentation

Applications should rarely need to close a connection explicitly, but those that do must be aware of its implications. Since there are two ways to close
a connection, we discuss them separately.

Graceful Closure

Passing an argument of f al se to the cl ose operation initiates graceful connection closure, as discussed in Connection Closure. The operation
blocks until all pending outgoing requests on the connection have completed.

Forceful Closure

A forceful closure is initiated by passing an argument of t r ue to the cl ose operation, causing the peer to receive a Connect i onLost Excepti on.

A client must use caution when forcefully closing a connection. Any outgoing requests that are pending on the connection when cl ose is invoked will
fail with a For cedCl oseConnect i onExcept i on. Furthermore, requests that fail with this exception are not automatically retried.

In a server context, forceful closure can be useful as a defense against hostile clients.

The Ice run time interprets a Cl oseConnect i onExcept i on to mean that it is safe to retry the request without violating at-most-once semantics. If
automatic retries are enabled, a client must only initiate a graceful close when it knows that there are no outgoing requests in progress on that
connection, or that any pending requests can be safely retried.

See Also

The Current Object
Automatic Retries
Connection Establishment
Connection Closure
Bidirectional Connections
lceSSL

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Connection+Closure
https://doc.zeroc.com/display/Ice35/Automatic+Retries
https://doc.zeroc.com/display/Ice35/The+Current+Object
https://doc.zeroc.com/display/Ice35/Automatic+Retries
https://doc.zeroc.com/display/Ice35/Connection+Establishment
https://doc.zeroc.com/display/Ice35/Connection+Closure
https://doc.zeroc.com/display/Ice35/Bidirectional+Connections
https://doc.zeroc.com/display/Ice35/IceSSL

	Using Connections

