Ice 3.4.2 Documentation

Java Mapping for Operations

On this page:

® Basic Java Mapping for Operations
® Normal and idempotent Operations in Java
® Passing Parameters in Java
© In-Parameters in Java
© OQut-Parameters in Java
© Null Parameters in Java
® Exception Handling in Java
© Exceptions and Out-Parameters

Basic Java Mapping for Operations

As we saw in the mapping for interfaces, for each operation on an interface, the proxy class contains a corresponding member function with the same
name. To invoke an operation, you call it via the proxy. For example, here is part of the definitions for our file system:

Slice

nodul e Fil esystem {
interface Node {
i denpotent string nane();

The nane operation returns a value of type st ri ng. Given a proxy to an object of type Node, the client can invoke the operation as follows:

Java
NodePrx node = ...; /1 Initialize proxy
String name = node. namne(); /] Get name via RPC

This illustrates the typical pattern for receiving return values: return values are returned by reference for complex types, and by value for simple types
(such asint ordoubl e).

Normal and i denpot ent Operations in Java

You can add an i denpot ent qualifier to a Slice operation. As far as the signature for the corresponding proxy method is concerned, i denpot ent
has no effect. For example, consider the following interface:

Slice
interface Exanple {
string opl();

i denpotent string op2();
b

The proxy interface for this is:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice34/Operations
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice34/Operations#Operations-IdempotentOperations

Ice 3.4.2 Documentation

Java

public interface Exanpl ePrx extends |ce. CbjectPrx {
public String opl();
public String op2();

Because i denpot ent affects an aspect of call dispatch, not interface, it makes sense for the two methods to be mapped the same.

Passing Parameters in Java

In-Parameters in Java

The parameter passing rules for the Java mapping are very simple: parameters are passed either by value (for simple types) or by reference (for
complex types and type st ri ng). Semantically, the two ways of passing parameters are identical: it is guaranteed that the value of a parameter will
not be changed by the invocation (with some caveats — see Location Transparency).

Here is an interface with operations that pass parameters of various types from client to server:

Slice

struct Nunmber AndString {
int x;
string str;
I
sequence<string> StringSeq;
di ctionary<long, StringSeqg> StringTable;
interface dientToServer {
void opl(int i, float f, bool b, string s);
voi d op2(Nunber AndString ns, StringSeq ss, StringTable st);

voi d op3(CientToServer* proxy);
b

The Slice compiler generates the following proxy for these definitions:

Java
public interface dientToServerPrx extends |Ice. ObjectPrx {
public void opl(int i, float f, boolean b, String s);

public void op2(Nunmber AndString ns, String[] ss, java.util.Mp st);
public void op3(CientToServerPrx proxy);

Given a proxy to a O i ent ToSer ver interface, the client code can pass parameters as in the following example:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Location+Transparency

Ice 3.4.2 Documentation

Java

ClientToServerPrx p = ...; /1 Get proxy...

p.opl(42, 3.14f, true, "Hello world!"); // Pass sinple literals

int i = 42;

float f = 3. 14f;

bool ean b = true;

String s = "Hello world!";

p.opl(i, f, b, s); /'l Pass sinple variables

Nunber AndString ns = new Nunber AndString();

ns.x = 42;

ns.str = "The Answer";

String[] ss ={ "Hello world!'" };

java.util.HashMap st = new java.util.HashMap();

st. put (new Long(0), ns);

p.op2(ns, ss, st); /1 Pass conpl ex variabl es

p. op3(p); /| Pass proxy

Out-Parameters in Java

Java does not have pass-by-reference: parameters are always passed by value. For a function to modify one of its arguments, we must pass a
reference (by value) to an object; the called function can then modify the object's contents via the passed reference.

To permit the called function to modify a parameter, the Java mapping uses holder classes. For example, for each of the built-in Slice types, such as i
nt and stri ng, the | ce package contains a corresponding holder class. Here are the definitions for the holder classes | ce. | nt Hol der and | ce.
StringHol der:

Java

package |ce;

public final class IntHolder {
public IntHolder() {}
public IntHolder(int value) {
this.val ue = val ue;
}
public int value;

}

public final class StringHolder {
public StringHol der() {}
public StringHolder(String value) {
this.val ue = val ue;

}

public String val ue;

A holder class has a public val ue member that stores the value of the parameter; the called function can modify the value by assigning to that
member. The class also has a default constructor and a constructor that accepts an initial value.

For user-defined types, such as structures, the Slice-to-Java compiler generates a corresponding holder type. For example, here is the generated
holder type for the Nunber AndSt ri ng structure we defined earlier:

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public final class Number AndStri ngHol der {
publ i c Nunmber AndStri ngHol der () {}

publ i ¢ Nunber AndStri ngHol der (Nunber AndString val ue) {
this.val ue = val ue;

}

publ i c Nunber AndString val ue;

This looks exactly like the holder classes for the built-in types: we get a default constructor, a constructor that accepts an initial value, and the public v
al ue member.

Note that holder classes are generated for every Slice type you define. For example, for sequences, such as the Fr ui t Pl at t er sequence, the
compiler does not generate a special Java Frui t Pl at t er type because sequences map to Java arrays. However, the compiler does generate a Fr
ui t Pl att er Hol der class, so we can pass a Frui t Pl att er array as an out-parameter.

To pass an out-parameter to an operation, we simply pass an instance of a holder class and examine the val ue member of each out-parameter
when the call completes. Here are the same Slice definitions we saw earlier, but this time with all parameters being passed in the out direction:

Slice

struct Number AndString {
int x;
string str;

b
sequence<string> StringSeq;
di ctionary<long, StringSeq> StringTable;

interface ServerTod ient {
void opl(out int i, out float f, out bool b, out string s);
voi d op2(out Nunber AndString ns,
out StringSeq ss,
out StringTable st);
voi d op3(out ServerTodient* proxy);

3

The Slice compiler generates the following code for these definitions:

Java

public interface dientToServerPrx extends |Ice.ObjectPrx {
public void opl(lce.IntHolder i, I|ce.FloatHolder f,
I ce. Bool eanHol der b, I|ce. StringHol der s);
public void op2(Nurmber AndSt ri ngHol der ns,
StringSeqHol der ss, StringTabl eHol der st);
public void op3(CientToServerPrxHol der proxy);

Given a proxy to a Server ToCl i ent interface, the client code can pass parameters as in the following example:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Sequences

Ice 3.4.2 Documentation

Java

ClientToServerPrx p = ...; /1 Get proxy...

Ice.IntHol der ih = new Ice.IntHolder();

I ce. Fl oat Hol der fh = new Ice. Fl oat Hol der () ;

| ce. Bool eanHol der bh = new I ce. Bool eanHol der () ;
I ce. StringHol der sh = new Ice. StringHol der();
p.opl(ih, fh, bh, sh);

Nunber AndSt ri ngHol der nsh = new Nunber AndString();
StringSeqHol der ssh = new StringSeqHol der () ;
StringTabl eHol der sth = new StringTabl eHol der () ;
p. op2(nsh, ssh, sth);

Server ToC i ent PrxHol der stcph = new Server ToC i ent PrxHol der () ;
p. op3(stch);

System out.witeln(ih.value); /1 Show one of the val ues

Again, there are no surprises in this code: the various holder instances contain values once the operation invocation completes and the val ue
member of each instance provides access to those values.

Null Parameters in Java

Some Slice types naturally have "empty" or "not there" semantics. Specifically, sequences, dictionaries, and strings all can be nul | , but the
corresponding Slice types do not have the concept of a null value. To make life with these types easier, whenever you pass nul | as a parameter or
return value of type sequence, dictionary, or string, the Ice run time automatically sends an empty sequence, dictionary, or string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested data types, members that are sequences, dictionaries, or strings
automatically arrive as an empty value at the receiving end. This saves you having to explicitly initialize, for example, every string element in a large
sequence before sending the sequence in order to avoid Nul | Poi nt er Except i on. Note that using null parameters in this way does not create null
semantics for Slice sequences, dictionaries, or strings. As far as the object model is concerned, these do not exist (only empty sequences,
dictionaries, and strings do). For example, whether you send a string as nul | or as an empty string makes no difference to the receiver: either way,
the receiver sees an empty string.

Exception Handling in Java

Any operation invocation may throw a run-time exception and, if the operation has an exception specification, may also throw user exceptions.
Suppose we have the following simple interface:

Slice

exception Tantrum {
string reason;

1

interface Child {
voi d askTod eanUp() throws Tantrum
b

Slice exceptions are thrown as Java exceptions, so you can simply enclose one or more operation invocations in at r y-cat ch block:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Exceptions#JavaMappingforExceptions-runtime
https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Exceptions#JavaMappingforExceptions-userexception

Ice 3.4.2 Documentation

Java
ChildPrx child = ...; /1 Get child proxy...

try {
chil d. askTod eanUp();

} catch (Tantrumt) {
Systemout.wite("The child says: ");
Systemout.witeln(t.reason);

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected run-time

errors, will typically be handled by exception handlers higher in the hierarchy. For example:

Java

public class dient {
static void run() {
ChildPrx child = ...; /1 Get child proxy...
try {
chil d. askTod eanUp();
} catch (Tantrumt) {
Systemout. print("The child says: ");
Systemout.println(t.reason);
child.scold(); /| Recover fromerror...
}
child.praise(); /1l Gve positive feedback. ..
}

public static void
mai n(String[] args)

{
try {
/1
run();
/1
} catch (Ice.Local Exception e) {
e.printStackTrace();
} catch (lce.UserException e) {
Systemerr.println(e.get Message());
}
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the strategy we

used for our first simple application.)

Exceptions and Out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an operation throws an exception: the parameter may still have its
original value or may have been changed by the operation's implementation in the target object. In other words, for out-parameters, Ice provides the

weak exception guarantee [1] but does not provide the strong exception guarantee.

@ This is done for reasons of efficiency: providing the strong exception guarantee would require more overhead than can be justified.

See Also

Operations

Java Mapping for Exceptions
Java Mapping for Sequences
Java Mapping for Interfaces

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Writing+an+Ice+Application+with+Java
https://doc.zeroc.com/display/Ice34/Operations
https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Exceptions
https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Interfaces

Ice 3.4.2 Documentation

® |ocation Transparency

References

1. Sutter, H. 1999. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions. Reading, MA: Addison-Wesley.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Location+Transparency
http://amzn.com/0201615622

	Java Mapping for Operations

