
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Lexical Rules
Slice's lexical rules are very similar to those of C++ and Java, except for some differences for identifiers.

On this page:

Comments
Keywords
Identifiers

Case Sensitivity
Identifiers That Are Keywords
Escaped Identifiers
Reserved Identifiers

Comments
Slice definitions permit both the C and the C++ style of writing comments:

Slice

/*
 * C-style comment.
 */

// C++-style comment extending to the end of this line.

Keywords
Slice uses a number of , which must be spelled in lowercase. For example, and are keywords and must be spelled as keywords class dictionary
shown. There are two exceptions to this lowercase rule: and are keywords and must be capitalized as shown.Object LocalObject

Identifiers
Identifiers begin with an alphabetic character followed by any number of alphabetic characters or digits. Underscores are also permitted in identifiers
with the following limitations:

an identifier cannot begin or end with an underscore
an identifier cannot contain multiple consecutive underscores

Given these rules, the identifier is legal but not , , or .get_account_name _account account_ get__account

Slice identifiers are restricted to the ASCII range of alphabetic characters and cannot contain non-English letters, such as Å. (Supporting non-ASCII
identifiers would make it very difficult to map Slice to target languages that lack support for this feature.)

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example, and are considered the same identifier TimeOfDay TIMEOFDAY
within a naming scope. However, Slice enforces consistent capitalization. After you have introduced an identifier, you must capitalize it consistently
throughout; otherwise, the compiler will reject it as illegal. This rule exists to permit mappings of Slice to languages that ignore case in identifiers as
well as to languages that treat differently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation languages. For example, is a perfectly good Slice identifier switch
but is a C++ and Java keyword. Each language mapping defines rules for dealing with such identifiers. The solution typically involves using a prefix to
map away from the keyword. For example, the Slice identifier is mapped to in C++ and in Java.switch _cpp_switch _switch

https://doc.zeroc.com/display/Ice34/Slice+Keywords

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

The rules for dealing with keywords can result in hard-to-read source code. Identifiers such as , , or will clash with C++ or native throw export
Java keywords (or both). To make life easier for yourself and others, try to avoid Slice identifiers that are implementation language keywords. Keep in
mind that mappings for new languages may be added to Ice in the future. While it is not reasonable to expect you to compile a list of all keywords in
all popular programming languages, you should make an attempt to avoid at least common keywords. Slice identifiers such as , , and self import wh

 are definitely not a good idea.ile

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with a backslash, for example:

Slice

struct dictionary { // Error!
 // ...
};

struct \dictionary { // OK
 // ...
};

struct \foo { // Legal, same as "struct foo"
 // ...
};

he backslash escapes the usual meaning of a keyword; in the preceding example, is treated as the identifier . The \dictionary dictionary
escape mechanism exists to permit keywords to be added to the Slice language over time with minimal disruption to existing specifications: if a pre-
existing specification happens to use a newly-introduced keyword, that specification can be fixed by simply prepending a backslash to the new
keyword. Note that, as a matter of style, you should avoid using Slice keywords as identifiers (even though the backslash escapes allow you to do
this).

It is legal (though redundant) to precede an identifier that is not a keyword with a backslash — the backslash is ignored in that case.

Reserved Identifiers

Slice reserves the identifier and all identifiers beginning with (in any capitalization) for the Ice implementation. For example, if you try to Ice Ice
define a type named , the Slice compiler will issue an error message.Icecream

Slice identifiers ending in any of the suffixes , , , and are also reserved. These endings are used by the various language Helper Holder Prx Ptr
mappings and are reserved to prevent name clashes in the generated code.

See Also

Slice Keywords

You can suppress this behavior by using the compiler option, which enables definition of identifiers beginning with . However, --ice Ice
do not use this option unless you are compiling the Slice definitions for the Ice run time itself.

https://doc.zeroc.com/display/Ice34/Slice+Keywords

	Lexical Rules

