
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Instrumentation Facility
The Ice run time can be instrumented using observer interfaces that monitor many aspects of the run time's internal objects and activities, including
connections, threads, servant dispatching, proxy invocations, endpoint lookups and connection establishment. We refer to these internal objects and
activities as "instrumented objects" in the discussion below. The application is responsible for implementing the instrumentation observer interfaces.
Note however that an implementation of these interfaces is provided by the , so most applications do not need to implement them and Metrics Facet
can instead collect metrics through the facet. The definition of the instrumentation interfaces can be found in the MetricsAdmin Ice

 Slice file./Instrumentation.ice

The Ice run time uses the interface to obtain observers for instrumented objects created by Ice::Instrumentation::CommunicatorObserver
the run time:

Slice

module Ice {
 module Instrumentation {
 local interface CommunicatorObserver {
 Observer getConnectionEstablishmentObserver(Endpoint endpt, string connector);
 Observer getEndpointLookupObserver(Endpoint endpt);
 ConnectionObserver getConnectionObserver(ConnectionInfo c, Endpoint e,
 ConnectionState s, ConnectionObserver o);
 ThreadObserver getThreadObserver(string parent, string id, ThreadState s,
 ThreadObserver o);
 InvocationObserver getInvocationObserver(Object* prx, string operation, Context ctx);
 DispatchObserver getDispatchObserver(Current c);
 void setObserverUpdater(ObserverUpdater updater);
 };
 };
 local interface Communicator {
 Ice::Instrumentation::CommunicatorObserver getObserver();
 // ...
 };
};

The Ice run time calls the appropriate operation each time a new instrumented object is created. The implementation of these get...Observer
methods should return an observer, or nil if the implementation does not want to monitor the instrumented object. This observer is associated with the
instrumented object and receives notifications of any changes to its attributes or state. All observer interfaces derive from the Ice::

 base interface:Instrumentation::Observer

Slice

local interface Observer {
 void attach();
 void detach();
 void failed(string exceptionName);
};

The operation is called upon association of the observer with the new instrumented object. The operation is called when the object attach detach
is destroyed. The operation is called to report any failures that might occur during the lifetime of the instrumented object. Observer failed
specializations provide additional operations for monitoring other attributes. For example, here is the Ice::Instrumentation::

 interface:ConnectionObserver

Slice

local interface ConnectionObserver extends Observer {
 void sentBytes(int num);
 void receivedBytes(int num);
};

The and methods are called by the Ice connection when new bytes are received or sent over the connection.sentBytes receivedBytes

https://doc.zeroc.com/display/Ice35/The+Metrics+Facet

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Shown below is an implementation of the communicator and connection observer interfaces to record sent and received bytes on a per-connection
basis. The observer dumps how many bytes were received and sent for the connection when it is detached:

C++

class ConnectionObserverImpl : public Ice::Instrumentation::ConnectionObserver {
public:
 ConnectionObserverImpl(const Ice::ConnectionInfoPtr& connInfo) :
 info(connInfo), sentBytes(0), receivedBytes(0)
 {
 }

 void attach() {}

 void detach()
 {
 cerr << info->remoteHost << ":" << info->remotePort << ": sent bytes = "
 << sentBytes << ", received bytes = " << receivedBytes << endl;
 }

 void sentBytes(int num)
 {
 sentBytes += num;
 }

 void receivedBytes(int num)
 {
 receivedBytes += num;
 }

 void failed(const std::string&)
 {
 }

private:

 Ice::ConnectionInfoPtr info;
 long sentBytes;
 long receivedBytes;
};

class CommunicatorObserverImpl : public Ice::Instrumentation::CommunicatorObserver {
public:

 Ice::Instrumentation::ConnectionObserverPtr
 getConnectionObserver(const Ice::ConnectionInfoPtr& c, const Ice::EndpointPtr& e,
 Ice::Instrumentation::ConnectionState s,
 const Ice::Instrumentation::ConnectionObserverPtr& previous)
 {
 return new ConnectionObserverImpl(c);
 }
};

For brevity we have omitted the implementation of the other methods; they all return 0 as we are only interested in instrumenting get...Observer
connections.

To register your implementation, you must pass it in an parameter when you :InitializationData initialize a communicator

C++

Ice::InitializationData id;
id.observer = new CommunicatorObserverImpl();
Ice::CommunicatorPtr ic = Ice::initialize(id);

https://doc.zeroc.com/display/Ice35/Communicator+Initialization

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

You can install a object on either the client or the server side (or both). Here is some example output produced by CommunicatorObserver
installing our and object implementations in a simple server:CommunicatorObserver ConnectionObserver

127.0.0.1:3487: sent bytes = 14, received bytes = 32
127.0.0.1:3487: sent bytes = 33, received bytes = 14
127.0.0.1:3490: sent bytes = 14, received bytes = 14
...

In addition to the operations for retrieving observers, the interface also defines a operation that is CommunicatorObserver setObserverUpdater
called by the Ice run time on initialization to provide an updater object to the implementation. This updater object can be CommunicatorObserver
used to "refresh" some of the created observers. The updater object provided by the Ice run time implements the following interface:

Slice

local interface ObserverUpdater {
 void updateConnectionObservers();
 void updateThreadObservers();
};

The implementation can call these operations to update the observers associated with Ice connections or threads. When CommunicatorObserver
one of these operations is called, the Ice run time calls the matching method on the interface for each get...Observer CommunicatorObserver
of the instrumented objects. For example, if you call , your implementation of will be updateConnectionObservers getConnectionObserver
called again for each Ice connection in the communicator. The parameter to represents the observer that is previous getConnectionObserver
currently associated with the connection.

This mechanism can be used to re-configure the observers associated with instrumented objects. For instance, the application might not wish to
instrument connections all the time but only when needed. It can use the observer updater to enable or disable the instrumentation. Here is the
example above modified to provide this functionality:

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

C++

class CommunicatorObserverImpl : public Ice::Instrumentation::CommunicatorObserver,
 private IceUtil::Mutex {
public:

 Ice::Instrumentation::ConnectionObserverPtr
 getConnectionObserver(const Ice::ConnectionInfoPtr& c, const Ice::EndpointPtr& e,
 Ice::Instrumentation::ConnectionState s,
 const Ice::Instrumentation::ConnectionObserverPtr& previous)
 {
 Lock sync(*this);
 return enabled ? new ConnectionObserverImpl(c) : 0;
 }

 void setEnabled(bool enabled)
 {
 {
 Lock sync(*this);
 if(this->enabled == enabled)
 return;
 this->enabled = enabled;
 }
 updater->updateConnections();
 }

 void setObserverUpdater(const Ice::Instrumentation::ObserverUpdaterPtr& updater)
 {
 this->updater = updater;
 }

 const Ice::Instrumentation::ObserverUpdaterPtr updater;
 bool enabled;
};

As you can see in the example above, special care needs to be taken with respect to synchronization. The Ice run time can call observers with Ice
internal locks held to guarantee consistency of the information passed to the methods. It is therefore important that the get...Observer
implementation of your observers performs quickly and does not create deadlocks. Your observers should not make remote invocations or call Ice
APIs that require acquiring locks on instrumented objects.

See Also

Communicator Initialization
The Metrics Facet

https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/The+Metrics+Facet

	Instrumentation Facility

