
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Passing Interfaces by Value
Consider the following definitions:

Slice

interface Time {
 idempotent TimeOfDay getTime();
 // ...
};

interface Record {
 void addTimeStamp(Time t); // Note: Time t, not Time* t
 // ...
};

Note that accepts a parameter of type , not of type . The question is, what does it mean to pass an interface ? addTimeStamp Time Time* by value
Obviously, at run time, we cannot pass an an actual interface to this operation because interfaces are abstract and cannot be instantiated. Neither
can we pass a proxy to a object to because a proxy cannot be passed where an interface is expected.Time addTimeStamp

However, what we pass to is something that is not abstract and derives from the interface. For example, at run time, we can addTimeStamp Time
could pass an instance of the class we saw . Because the class derives from the interface, the class type is TimeOfDay earlier TimeOfDay Time
compatible with the formal parameter type and, at run time, what is sent over the wire to the server is the class instance.Time TimeOfDay

See Also

Pass-by-Value Versus Pass-by-Reference

https://doc.zeroc.com/display/Ice34/Pass-by-Value+Versus+Pass-by-Reference
https://doc.zeroc.com/display/Ice34/Pass-by-Value+Versus+Pass-by-Reference

	Passing Interfaces by Value

