
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

IceGrid and the Administrative Facility
The Ice provides a general purpose solution for administering individual Ice programs. IceGrid extends this functionality in administrative facility
several convenient ways:

IceGrid automatically enables the facility in deployed servers.
IceGrid uses the to terminate an active server, giving it an opportunity to perform an orderly shutdown. facetProcess
IceGrid provides a secure mechanism for invoking administrative operations on deployed servers.
IceGrid administrative tools use the facility to display the of servers and services, and manipulate and monitor services.properties IceBox

We discuss each of these items in separate sections below.

On this page:

Enabling the Administrative Facility for a Deployed Server
Endpoints

Deactivating a Deployed Server
Routing Administrative Requests

Obtaining a Proxy
Callbacks without Glacier2
Callbacks with Glacier2

Using the Administrative Facility in IceGrid Utilities
Properties
Administering IceBox Services

Enabling the Administrative Facility for a Deployed Server
As we saw in our , the configuration properties for a deployed server include definitions for the following properties:deployment example

Ice.Admin.Endpoints
Ice.Admin.ServerId

In conjunction with the property, these definitions satisfy the requirements for enabling the .Ice.Default.Locator administrative object adapter

Endpoints

If a server's descriptor does not supply a value for , IceGrid supplies the default value shown below:Ice.Admin.Endpoints

Ice.Admin.Endpoints=tcp -h 127.0.0.1

For , IceGrid specifies the local host interface () so that administrative access is limited to clients running on the same security reasons 127.0.0.1
host. This configuration permits the IceGrid node to invoke operations on the server's , but prevents remote access unless the client objectadmin
establishes an .IceGrid administrative session

Specifying a fixed port is unnecessary because the server registers its endpoints with IceGrid upon each new activation.

Deactivating a Deployed Server
An IceGrid node uses the to gracefully deactivate a server. In programs using Ice 3.3 or later, this interface is implemented interfaceIce::Process
by the administrative facet named . In earlier versions of Ice, an object adapter implemented this interface in a special servant if the Process
adapter's property was enabled.RegisterProcess

Regardless of version, the Ice run time registers an proxy with the IceGrid registry when properly configured. Registration normally Ice::Process
occurs during communicator initialization, but it can be delayed when a server needs to install its .own administrative facets

When the node is ready to deactivate a server, it invokes the operation on the server's proxy. If the server does not shutdown Ice::Process
terminate in a timely manner, the node asks the operating system to terminate the process. Each server can be configured with its own deactivation

. If no timeout is configured, the node uses the value of the property , which defaults to seconds.timeout IceGrid.Node.WaitTime 60

If a server does not register an proxy, the IceGrid node cannot request a graceful termination and must resort instead to a more Ice::Process
drastic, and potentially harmful, alternative by asking the operating system to terminate the server's process. On Unix, the node sends the SIGTERM
signal to the process and, if the server does not terminate within the deactivation timeout period, sends the signal.SIGKILL

https://doc.zeroc.com/display/Ice35/Administrative+Facility
https://doc.zeroc.com/display/Ice35/The+Process+Facet
https://doc.zeroc.com/display/Ice35/The+Properties+Facet
https://doc.zeroc.com/display/Ice35/IceBox
https://doc.zeroc.com/display/Ice35/Using+IceGrid+Deployment#UsingIceGridDeployment-server
https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.Endpoints
https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.ServerId
https://doc.zeroc.com/display/Ice35/Ice+Default+and+Override+Properties#IceDefaultandOverrideProperties-Ice.Default.Locator
https://doc.zeroc.com/display/Ice35/The+Administrative+Object+Adapter
https://doc.zeroc.com/display/Ice35/Security+Considerations+for+Administrative+Facets
https://doc.zeroc.com/display/Ice35/The+admin+Object
https://doc.zeroc.com/display/Ice35/IceGrid+Administrative+Sessions
https://doc.zeroc.com/display/Ice35/The+Process+Facet
https://doc.zeroc.com/display/Ice35/Custom+Administrative+Facets
https://doc.zeroc.com/display/Ice35/Server+Descriptor+Element
https://doc.zeroc.com/display/Ice35/Server+Descriptor+Element
https://doc.zeroc.com/display/Ice35/IceGrid+Properties#IceGridProperties-IceGrid.Node.WaitTime

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

On Windows, the node first sends a event to the server and, if the server does not stop within the deactivation timeout period, Ctrl+Break
terminates the process immediately.

Servers that disable the facet can install a signal handler in order to intercept the node's notification about pending deactivation. For Process
example, portable C++ programs could use the for this purpose. However, we recommend that servers be allowed classIceUtil::CtrlCHandler
to use the facet when possible.Process

Routing Administrative Requests
IceGrid defaults to using the local host interface when defining the endpoints of a deployed server's . This configuration administrative object adapter
allows local clients such as the IceGrid node to access the server's while preventing direct invocations from remote clients. A server's objectadmin a

 object may still be accessed remotely, but only by clients that establish an . To facilitate these requests, IceGrid dmin IceGrid administrative session
uses an intermediary object that relays requests to the server via its node. For example, the following figure illustrates the path of a getProperty
invocation:

Routing for administrative requests on a server.

Obtaining a Proxy

During an , a client has two ways of obtaining the intermediary proxy for a server's :administrative session objectadmin

Slice

module IceGrid {
 interface Admin {
 idempotent string getServerAdminCategory();
 idempotent Object* getServerAdmin(string id)
 throws ServerNotExistException,
 NodeUnreachableException,
 DeploymentException;
 // ...
 };
};

If the client wishes to construct the proxy itself and already knows the server's ID, the client need only modify the proxy of the IceGrid::Admin
object with a new identity. The identity's category must be the return value of , while its name is the ID of the desired getServerAdminCategory
server. The example below demonstrates how to create the proxy and access the of a server: facetProperties

https://doc.zeroc.com/pages/viewpage.action?pageId=14680295
https://doc.zeroc.com/display/Ice35/The+admin+Object
https://doc.zeroc.com/display/Ice35/IceGrid+Administrative+Sessions
https://doc.zeroc.com/display/Ice35/IceGrid+Administrative+Sessions
https://doc.zeroc.com/display/Ice35/The+admin+Object
https://doc.zeroc.com/display/Ice35/The+Properties+Facet

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

1.
2.
3.

4.

C++

IceGrid::AdminSessionPrx session = ...;
IceGrid::AdminPrx admin = session->getAdmin();
Ice::Identity serverAdminId;
serverAdminId.category = admin->getServerAdminCategory();
serverAdminId.name = "MyServerId";
Ice::PropertiesAdminPrx props =
 Ice::PropertiesAdminPrx::checkedCast(
 admin->ice_identity(serverAdminId), "Properties");

Alternatively, the operation returns a proxy that refers to the object of the given server. This operation performs additional getServerAdmin admin
validation and therefore may raise one of the exceptions shown in its signature above.

Callbacks without Glacier2

IceGrid also supports the relaying of callback requests from a back-end server to an administrative client over the client's existing connection to the
registry, which is especially important for a client using a network port that is forwarded by a firewall or protected by a secure tunnel.

For this mechanism to work properly, a client that established its directly with IceGrid and not via a must take administrative session Glacier2 router
additional steps to ensure that the proxies for its callback objects contain the proper identities and endpoints. The IceGrid::AdminSession
interface provides an operation to help with the client's preparations:

Slice

module IceGrid {
interface AdminSession ... {
 idempotent Object* getAdminCallbackTemplate();
 // ...
};
};

As its name implies, the operation returns a that supplies the identity and endpoints a client needs to getAdminCallbackTemplate template proxy
configure its callback objects. The information contained in the template proxy is valid for the lifetime of the administrative session. This operation
returns a null proxy if the client's administrative session was established via a Glacier2 router, in which case the client should use the callback
strategy described in the next section instead.

The endpoints contained in the template proxy are those of an object adapter in the IceGrid registry. The client must transfer these endpoints to the
proxies for its callback objects so that callback requests from a server are sent first to IceGrid and then relayed over a to the bidirectional connection
client, as shown below:

Routing for callback requests from a server.

Here is the complete list of steps:

Invoke to obtain the template proxy.getAdminCallbackTemplate
Extract the category from the template proxy's identity and use it in all callback objects.
Extract the endpoints from the template proxy and use them to establish the published endpoints of the callback object adapter.

https://doc.zeroc.com/display/Ice35/IceGrid+Administrative+Sessions
https://doc.zeroc.com/display/Ice35/Glacier2+Integration+with+IceGrid
https://doc.zeroc.com/display/Ice35/Bidirectional+Connections

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

4.

5.

Create the callback object adapter and associate it with the administrative session's connection, thereby establishing a bidirectional
connection with IceGrid.
Add servants to the callback object adapter.

As an example, let us assume that we have deployed an IceBox server with the server id and our objective is to register a icebox1 ServiceObserv
 callback that monitors the state of the IceBox services. The first step is to obtain a proxy for the administrative facet named er IceBox.

:ServiceManager

C++

IceGrid::AdminSessionPrx session = ...;
IceGrid::AdminPrx admin = session->getAdmin();
Ice::ObjectPrx obj = admin->getServerAdmin("icebox1");
IceBox::ServiceManagerPrx svcmgr =
 IceBox::ServiceManagerPrx::checkedCast(
 obj, "IceBox.ServiceManager");

Next, we retrieve the template proxy and compose the published endpoints for our callback object adapter:

C++

Ice::ObjectPrx tmpl = admin->getAdminCallbackTemplate();
Ice::EndpointSeq endpts = tmpl->ice_getEndpoints();
string publishedEndpoints;
for (Ice::EndpointSeq::const_iterator p = endpts.begin(); p != endpts.end(); ++p) {
 if (p == endpts.begin())
 publishedEndpoints = (*p)->toString();
 else
 publishedEndpoints += ":" + (*p)->toString();
}
communicator->getProperties()->setProperty(
 "CallbackAdapter.PublishedEndpoints", publishedEndpoints);

The final steps involve creating the callback object adapter, adding a servant, establishing the bidirectional connection and registering our callback
with the service manager:

C++

Ice::ObjectAdapterPtr callbackAdapter = communicator->createObjectAdapter("CallbackAdapter");
Ice::Identity cbid;
cbid.category = tmpl->ice_getIdentity().category;
cbid.name = "observer";
IceBox::ServiceObserverPtr obs = new ObserverI;
Ice::ObjectPrx cbobj = callbackAdapter->add(obs, cbid);
IceBox::ServiceObserverPrx cb = IceBox::ServiceObserverPrx::uncheckedCast(cbobj);
callbackAdapter->activate();
session->ice_getConnection()->setAdapter(callbackAdapter);
svcmgr->addObserver(cb);

At this point the client is ready to receive callbacks from the IceBox server whenever one of its services changes state.

Callbacks with Glacier2

A client that creates an via a already has a bidirectional connection over which callbacks from administrative administrative session Glacier2 router
facets are relayed. The flow of requests is shown in the illustration below, which presents a simplified view with the router and IceGrid services all
running on the same host.

https://doc.zeroc.com/display/Ice35/IceBox+Administration
https://doc.zeroc.com/display/Ice35/IceBox+Administration
https://doc.zeroc.com/display/Ice35/IceGrid+Administrative+Sessions
https://doc.zeroc.com/display/Ice35/Glacier2+Integration+with+IceGrid

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

1.
2.
3.
4.

Routing for callback requests from a server.

To prepare for , the client must perform the same steps as for any router client:receiving callbacks

Obtain a proxy for the router.
Retrieve the category to be used in callback objects.
Create the callback object adapter and associate it with the router, thereby establishing a bidirectional connection.
Add servants to the callback object adapter.

Repeating the example from the previous section, we assume that we have deployed an IceBox server with the server ID and our objective icebox1
is to register a callback that monitors the state of the IceBox services. The first step is to obtain a proxy for the administrative ServiceObserver
facet named :IceBox.ServiceManager

C++

IceGrid::AdminSessionPrx session = ...;
IceGrid::AdminPrx admin = session->getAdmin();
Ice::ObjectPrx obj = admin->getServerAdmin("icebox1");
IceBox::ServiceManagerPrx svcmgr =
 IceBox::ServiceManagerPrx::checkedCast(obj, "IceBox.ServiceManager");

Now we are ready to create the object adapter and register the observer:

C++

Ice::RouterPrx router = communicator->getDefaultRouter();
Ice::ObjectAdapterPtr callbackAdapter =
 communicator->createObjectAdapterWithRouter("CallbackAdapter", router);
Ice::Identity cbid;
cbid.category = router->getCategoryForClient();
cbid.name = "observer";
IceBox::ServiceObserverPtr obs = new ObserverI;
Ice::ObjectPrx cbobj = callbackAdapter->add(obs, cbid);
IceBox::ServiceObserverPrx cb = IceBox::ServiceObserverPrx::uncheckedCast(cbobj);
callbackAdapter->activate();
svcmgr->addObserver(cb);

At this point the client is ready to receive callbacks from the IceBox server whenever one of its services changes state.

Using the Administrative Facility in IceGrid Utilities
This section discusses the ways in which the make use of the administrative facility.IceGrid utilities

Properties

https://doc.zeroc.com/display/Ice35/Callbacks+through+Glacier2
https://doc.zeroc.com/display/Ice35/IceBox+Administration
https://doc.zeroc.com/display/Ice35/icegridadmin+Command+Line+Tool

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

The command line and graphical utilities allow you to explore the configuration properties of a server or service.

One property in particular, , is given special consideration by the graphical utility. Although it is not used by the Ice run time, the BuildId BuildId
property gives you the ability to describe the build configuration of your application. The property's value is shown by the graphical utility in its own
field in the attributes of a server or service, as well as in the list of properties. You can also retrieve the value of this property using the command-line
utility with the following statement:

> server property MyServerId BuildId

Or, for an IceBox service, with this command:

> service property MyServerId MyService BuildId

The utilities use the to access these properties, via a proxy obtained as described . facetProperties above

Administering IceBox Services

IceBox provides an administrative facet that implements the interface, which supports operations for stopping an active IceBox::ServiceManager
service, and for starting a service that is currently inactive. These operations are available in both the command line and graphical utilities.

IceBox also defines a interface for receiving callbacks when services are stopped or started. The graphical utility implements this ServiceObserver
interface so that it can present an updated view of the state of an IceBox server. We presented that demonstrate how to register an examples
observer with the IceBox administrative facet.

See Also

Administrative Facility
The Process Facet
The Properties Facet
The Administrative Object Adapter
The admin Object
Custom Administrative Facets
Security Considerations for Administrative Facets
Portable Signal Handling in C++
Bidirectional Connections
Using IceGrid Deployment
Glacier2 Integration with IceGrid
IceGrid Administrative Sessions
icegridadmin Command Line Tool
Callbacks through Glacier2
IceBox
IceBox Administration
IceGrid Properties

https://doc.zeroc.com/display/Ice35/The+Properties+Facet
https://doc.zeroc.com/display/Ice35/IceBox
https://doc.zeroc.com/display/Ice35/IceBox+Administration
https://doc.zeroc.com/display/Ice35/Administrative+Facility
https://doc.zeroc.com/display/Ice35/The+Process+Facet
https://doc.zeroc.com/display/Ice35/The+Properties+Facet
https://doc.zeroc.com/display/Ice35/The+Administrative+Object+Adapter
https://doc.zeroc.com/display/Ice35/The+admin+Object
https://doc.zeroc.com/display/Ice35/Custom+Administrative+Facets
https://doc.zeroc.com/display/Ice35/Security+Considerations+for+Administrative+Facets
https://doc.zeroc.com/pages/viewpage.action?pageId=14680295
https://doc.zeroc.com/display/Ice35/Bidirectional+Connections
https://doc.zeroc.com/display/Ice35/Using+IceGrid+Deployment
https://doc.zeroc.com/display/Ice35/Glacier2+Integration+with+IceGrid
https://doc.zeroc.com/display/Ice35/IceGrid+Administrative+Sessions
https://doc.zeroc.com/display/Ice35/icegridadmin+Command+Line+Tool
https://doc.zeroc.com/display/Ice35/Callbacks+through+Glacier2
https://doc.zeroc.com/display/Ice35/IceBox
https://doc.zeroc.com/display/Ice35/IceBox+Administration
https://doc.zeroc.com/display/Ice35/IceGrid+Properties

	IceGrid and the Administrative Facility

