Ice 3.5.1 Documentation

Example of a File System Server in C++

This page presents the source code for a C++ server that implements our file system and communicates with the client we wrote earlier. The code is
fully functional, apart from the required interlocking for threads.

The server is remarkably free of code that relates to distribution: most of the server code is simply application logic that would be present just the
same for a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away from application code so
that you can concentrate on developing application logic instead of networking infrastructure.

@ The server code shown here is not quite correct as it stands: if two clients access the same file in parallel, each via a different thread, one
thread may read the _I i nes data member while another thread updates it. Obviously, if that happens, we may write or return garbage or,
worse, crash the server. However, it is trivial to make the r ead and wr i t e operations thread-safe: a single data member and two lines of
source code are sufficient to achieve this. We discuss how to write thread-safe servant implementations in Threads and Concurrency with
C++.

On this page:

Implementing a File System Server in C++
Server main Program in C++
Servant Class Definitions in C++
The Servant Implementation in C++
© Implementing Filel
© Implementing Directoryl
© Implementing Nodel

Implementing a File System Server in C++

We have now seen enough of the server-side C++ mapping to implement a server for our file system. (You may find it useful to review these Slice
definitions before studying the source code.)

Our server is composed of two source files:

® Server.cpp
This file contains the server main program.

® Filesystem .cpp
This file contains the implementation for the file system servants.

Server mai n Program in C++

Our server main program, in the file Ser ver . cpp, uses the | ce: : Appl i cati on class. The r un method installs a signal handler, creates an object
adapter, instantiates a few servants for the directories and files in the file system, and then activates the adapter. This leads to a mai n program as
follows:

C++

#i ncl ude <lce/lce. h>
#i ncl ude <Filesystem .h>

usi ng nanespace std;
usi ng nanespace Fil esystem

class FilesystemApp : virtual public Ice::Application {
public:
virtual int run(int, char*[]) {
/'l Terminate cleanly on receipt of a signal
/1
shut downOnl nterrupt ();

/1 Create an object adapter.

11

I ce:: Object AdapterPtr adapter = communi cator ()->creat eObj ect Adapt er Wt hEndpoi nt s(
"Sinpl eFi | esystent, "default -p 10000");

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/pages/viewpage.action?pageId=14680620
https://doc.zeroc.com/pages/viewpage.action?pageId=14680294
https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/pages/viewpage.action?pageId=14680649#TheServerSidemainFunctioninC++-application
https://doc.zeroc.com/pages/viewpage.action?pageId=14680294
https://doc.zeroc.com/pages/viewpage.action?pageId=14680294

Ice 3.5.1 Documentation

/| Create the root directory (wWith nane "/" and no parent)
/1

Directoryl Ptr root = new Directoryl (conmunicator(), "/", 0);
root - >acti vat e(adapter);

// Create a file called "README" in the root directory

/1
FilelPtr file = new Filel (communicator (), "READVE', root);
Li nes text;

text. push_back("This file systemcontains a collection of poetry.");
file->wite(text);
file->activate(adapter);

/'l Create a directory called "Col eridge"

/1 in the root directory

/1

DirectorylPtr coleridge = new Directoryl (conmmunicator(), "Coleridge", root)
col eri dge->acti vat e(adapter);

I/l Create a file called "Kubla_Khan"

/1 in the Coleridge directory

Il

file = new Fil el (communicator(), "Kubla_kKhan", coleridge);
text.erase(text.begin(), text.end());

text. push_back("In Xanadu di d Kubl a Khan");

text. push_back("A stately pl easure-done decree:");
text. push_back("Were Al ph, the sacred river, ran");
text. push_back(" Through caverns neasurel ess to nman");
text. push_back("Down to a sunless sea.");
file->wite(text);

file->activate(adapter);

/1 Al objects are created, allow client requests now
11
adapt er->activate();

/1 Vit until we are done

/1

communi cat or () - >wai t For Shut down() ;
if (interrupted()) {

cerr << appNanme() << ": received signal, shutting down" << endl;
}
return O;
b
b
int
mai n(int argc, char* argv[])
{
Fi | esyst emApp app;
return app. mai n(argc, argv);
}

There is quite a bit of code here, so let us examine each section in detail:

C++

#i ncl ude <Fil esystenl . h>
#i ncl ude <Ice/ Application. h>

usi ng nanespace std;
usi ng nanespace Fil esystem

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

The code includes the header file Fi | esyst eml . h. That file includes | ce/ | ce. h as well as the header file that is generated by the Slice compiler, F
il esyst em h. Because we are using | ce: : Appl i cati on, we need to include | ce/ Appl i cati on. h as well.

Two usi ng declarations, for the namespaces st d and Fi | esyst em permit us to be a little less verbose in the source code.

The next part of the source code is the definition of Fi | esyst emApp, which derives from | ce: : Appl i cat i on and contains the main application
logic in its r un method:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

C++

class FilesystemApp : virtual public Ice::Application {
public:
virtual int run(int, char*[]) {
/1l Terminate cleanly on receipt of a signal
/1
shut downOnl nterrupt ();

/] Create an object adapter.

/1

I ce:: Obj ect AdapterPtr adapter = communi cator()->creat eObj ect Adapt er Wt hEndpoi nt s(
"Sinpl eFi | esystenf, "default -p 10000");

/] Create the root directory (with nane "/" and no parent)
/1

DirectorylPtr root = new Directoryl (comunicator(), "“/", 0);
root - >acti vat e(adapter);

/Il Create a file called "READVE" in the root directory

/1
FilelPtr file = new Fil el (communicator (), "READVE", root);
Li nes text;

text. push_back("This file systemcontains a collection of poetry.");
file->wite(text);
file->activate(adapter);

/] Create a directory called "Col eridge"

/1 in the root directory

/1

Directoryl Ptr coleridge = new Directoryl (comuni cator(), "Coleridge", root);
col eri dge->acti vat e(adapter);

/Il Create a file called "Kubla_Khan"

/1 in the Coleridge directory

/1

file = new Fil el (conmmunicator (), "Kubla_Khan", coleridge);
text.erase(text.begin(), text.end());

text. push_back("ln Xanadu did Kubla Khan");

text. push_back("A stately pleasure-done decree:");
text. push_back("Where Al ph, the sacred river, ran");
text. push_back(" Through caverns neasureless to man");
text. push_back("Down to a sunless sea.");
file->wite(text);

file->activate(adapter);

/Il All objects are created, allow client requests now
/1
adapt er->activate();

/1 Vait until we are done

/1

conmmuni cat or () - >wai t For Shut down() ;

if (interrupted()) {
cerr << appName() <<

recei ved signal, shutting down" << endl;

}

return O;
s
}

Much of this code is boiler plate that we saw previously: we create an object adapter, and, towards the end, activate the object adapter and call wai t
For Shut down.

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the structure
shown below:

e ¥ o H
U - Directory (\I RootDir
et
rd \1
/ Y
. = File x'j 1\‘1
/ \

rd
Coleridge C . README

Kubla-Khan

A small file system.

As we will see shortly, the servants for our directories and files are of type Di r ect oryl and Fi | el , respectively. The constructor for either type of
servant accepts three parameters: the communicator, the name of the directory or file to be created, and a handle to the servant for the parent
directory. (For the root directory, which has no parent, we pass a null parent handle.) Thus, the statement

C++

DirectorylPtr root = new Directoryl (comunicator(), "/", 0);

creates the root directory, with the name " /" and no parent directory. Note that we use the smart pointer class to hold the return value from new; that
way, we avoid any memory management issues. The types Di rectoryl Ptr and Fi | el Ptr are defined as follows in a header file Fi | esyst en . h:

C++
typedef IceUtil::Handl e<Directoryl> DirectorylPtr;

typedef IceUtil::Handle<Filel> FilelPtr;

Here is the code that establishes the structure in the illustration above.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Smart+Pointers+for+Classes

Ice 3.5.1 Documentation

C++

/'l Create the root directory (with nane "/" and no parent)
/1

DirectorylPtr root = new Directoryl (comunicator(), "/", 0);
root->activate(adapter);

/] Create a file called "README" in the root directory

11
FilelPtr file = new Filel (comrunicator (), "READVE', root);
Li nes text;

text. push_back("This file systemcontains a collection of poetry.");
file->wite(text);
file->activate(adapter);

/] Create a directory called "Col eridge"

/'l in the root directory

/1

Directoryl Ptr coleridge = new Directoryl (comuni cator(), "Coleridge", root);
col eri dge->activate(adapter);

/]l Create a file called "Kubla_Khan"

/1 in the Coleridge directory

/1

file = new Filel (comunicator(), "Kubla_Khan", coleridge);
text.erase(text.begin(), text.end());

text. push_back("In Xanadu did Kubla Khan");

text. push_back("A stately pl easure-done decree:");
text. push_back("Were Al ph, the sacred river, ran");
text. push_back(" Through caverns neasureless to man");
text. push_back("Down to a sunless sea.");
file->wite(text);

file->activate(adapter);

We first create the root directory and a file READVE within the root directory. (Note that we pass the handle to the root directory as the parent pointer
when we create the new node of type Fi | el .)

After creating each servant, the code calls act i vat e on the servant. (We will see the definition of this member function shortly.) The act i vat e
member function adds the servant to the ASM.

The next step is to fill the file with text:

C++

FilelPtr file = new Filel (comunicator(), "READVE', root);

Li nes text;

text. push_back("This file systemcontains a collection of poetry.");
file->wite(text);

file->activate(adapter);

Recall that Slice sequences map to STL vectors. The Slice type Li nes is a sequence of strings, so the C++ type Li nes is a vector of strings; we add
a line of text to our READVE file by calling push_back on that vector.

Finally, we call the Slice wr i t e operation on our Fi | el servant by simply writing:

C++

file->wite(text);

This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via a smart class pointer (of
type Fi | ePt r) and not via a proxy (of type Fi | ePr x), the Ice run time does not know that this call is even taking place — such a direct call into a
servant is not mediated by the Ice run time in any way and is dispatched as an ordinary C++ function call.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=14680630

Ice 3.5.1 Documentation

In similar fashion, the remainder of the code creates a subdirectory called Col er i dge and, within that directory, a file called Kubl a_Khan to
complete the structure in the above illustration.

Servant Class Definitions in C++

We must provide servants for the concrete interfaces in our Slice specification, that is, we must provide servants for the Fi | e and Di r ect ory
interfaces in the C++ classes Fi | el and Di r ect or yl . This means that our servant classes might look as follows:

C++

nanmespace Filesystem {

class Filel : virtual public File {
/1

b

class Directoryl : virtual public Directory {
11

b

}

This leads to the C++ class structure as shown:

| Object |
F 1
| Hode |
¥
- T
.--""-FF- H--'
-l
| File | [Directory |
Y »

| Filel | | Directory |

File system servants using interface inheritance.

The shaded classes in the illustration above are skeleton classes and the unshaded classes are our servant implementations. If we implement our
servants like this, Fi | el must implement the pure virtual operations it inherits from the Fi | e skeleton (r ead and wr i t €), as well as the operation it
inherits from the Node skeleton (nane). Similarly, Di r ect or yl must implement the pure virtual function it inherits from the Di r ect or y skeleton (I i
st), as well as the operation it inherits from the Node skeleton (nane). Implementing the servants in this way uses interface inheritance from Node
because no implementation code is inherited from that class.

Alternatively, we can implement our servants using the following definitions:

C++

nanmespace Filesystem {
class Nodel : virtual public Node {

/1

b

class Filel : virtual public File, virtual public Nodel {
/1

|

class Directoryl : virtual public Directory, virtual public Nodel {
/1

b

This leads to the C++ class structure shown:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

| Object |
A
| Node |
_.-"'-'r'iﬁ\
T “x\\
..-'"'f# \‘\"x
- .
e | Nodel | o=
- T %)
-~ s Y .,
.-"'"# // % ™
File | g N | Directory
F s \\\\ F Y
ra
P \\
// LY
File | DirectoryI |

File system servants using implementation inheritance.

In this implementation, Nodel is a concrete base class that implements the nane operation it inherits from the Node skeleton. Fi | el and Di r ect or
yl use multiple inheritance from Nodel and their respective skeletons, that is, Fi | el and Di r ect oryl use implementation inheritance from their No
del base class.

Either implementation approach is equally valid. Which one to choose simply depends on whether we want to re-use common code provided by Nodel
. For the implementation that follows, we have chosen the second approach, using implementation inheritance.

Given the structure in the above illustration and the operations we have defined in the Slice definition for our file system, we can add these operations
to the class definition for our servants:

C++

nanmespace Filesystem {
class Nodel : virtual public Node {
public:
virtual std::string name(const lce::Currentg&);

b
class Filel : virtual public File, virtual public Nodel {
public:
virtual Lines read(const Ice::Current&);
virtual void wite(const Lines& const Ice::Current&);
|
class Directoryl : virtual public Directory, virtual public Nodel {
public:
virtual NodeSeq list(const Ice::Current&);
b

This simply adds signatures for the operation implementations to each class. Note that the signatures must exactly match the operation signatures in
the generated skeleton classes — if they do not match exactly, you end up overloading the pure virtual function in the base class instead of
overriding it, meaning that the servant class cannot be instantiated because it will still be abstract. To avoid signature mismatches, you can copy the
signatures from the generated header file (Fi | esyst em h), or you can use the - - i npl option with sl i ce2cpp to generate header and
implementation files that you can add your application code to.

Now that we have the basic structure in place, we need to think about other methods and data members we need to support our servant
implementation. Typically, each servant class hides the copy constructor and assignment operator, and has a constructor to provide initial state for its
data members. Given that all nodes in our file system have both a name and a parent directory, this suggests that the Nodel class should implement
the functionality relating to tracking the name of each node, as well as the parent-child relationships:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/slice2cpp+Command-Line+Options

Ice 3.5.1 Documentation

C++

namespace Filesystem {
class Directoryl;
typedef lceUtil::Handl e<Directoryl> DirectorylPtr;

class Nodel : virtual public Node {
public:
virtual std::string nane(const lce::Current&);
Nodel (const |ce:: Conmuni catorPtr&, const std::string& const DirectorylPtr&);
voi d activate(const |ce::CbjectAdapterPtr&);
private:
std::string _naneg;
lce::ldentity _id;
Directoryl Ptr _parent;
Nodel (const Nodel &) ; /| Copy forbidden
voi d operator=(const Nodel &) ; /'l Assignnent forbidden

The Nodel class has a private data member to store its name (of type st d: : st ri ng) and its parent directory (of type Di rect oryl Pt r). The
constructor accepts parameters that set the value of these data members. For the root directory, by convention, we pass a null handle to the
constructor to indicate that the root directory has no parent. The constructor also requires the communicator to be passed to it. This is necessary
because the constructor creates the identity for the servant, which requires access to the communicator. The act i vat e member function adds the
servant to the ASM (which requires access to the object adapter) and connects the child to its parent.

The Fi | el servant class must store the contents of its file, so it requires a data member for this. We can conveniently use the generated Li nes type
(whichisastd: :vector<std::string>)to hold the file contents, one string for each line. Because Fi | el inherits from Nodel , it also requires a
constructor that accepts the communicator, file name, and parent directory, leading to the following class definition:

C++

nanmespace Filesystem {
class Filel : virtual public File, virtual public Nodel {
public:
virtual Lines read(const Ice::Current&);
virtual void wite(const Lines& const lce::Currentg&);
Filel (const Ice::ComunicatorPtr&, const std::string& const DirectorylPtré&);
private:
Lines _lines;

}s

For directories, each directory must store its list of child notes. We can conveniently use the generated NodeSeq type (which is a vect or <NodePr x>
) to do this. Because Di r ect or yl inherits from Nodel , we need to add a constructor to initialize the directory name and its parent directory. As we
will see shortly, we also need a private helper function, addChi | d, to make it easier to connect a newly created directory to its parent. This leads to
the following class definition:

C++

nanmespace Filesystem {
class Directoryl : virtual public Directory, virtual public Nodel {
public:
virtual NodeSeq list(const Ice::Current& const;
Directoryl (const Ice::Conmuni catorPtr& const std::string& const DirectorylPtr&);
voi d addChi | d(NodePrx child);
private:
NodeSeq _contents;
b
}

Copyright © 2017, ZeroC, Inc.

10

Ice 3.5.1 Documentation

Servant Header File Example

Putting all this together, we end up with a servant header file, Fi | esyst enl . h, as follows:

C++

#i ncl ude <lIce/lce. h>
#i ncl ude <Fil esystem h>

nanmespace Filesystem {
class Directoryl;
typedef IcelUtil::Handle<Directoryl> DirectorylPtr;

class Nodel : virtual public Node {
public:
virtual std::string name(const lce::Currentg&);
Nodel (const |ce:: Communi catorPtr&, const std::string& const DirectorylPtr&);
voi d activate(const |ce::ObjectAdapterPtr&);
private:
std::string _nane;
lce::ldentity _id;
Directoryl Ptr _parent;
Nodel (const Nodel &) ; /| Copy forbidden
voi d operator=(const Nodel &); /1 Assignment forbidden
b

typedef IceUtil::Handl e<Nodel > Nodel Ptr;

class Filel : virtual public File, virtual public Nodel {
public:
virtual Lines read(const Ice::Current&);
virtual void wite(const Lines& const lce::Current& = lce::Current());
Filel (const |ce::ComunicatorPtr&, const std::string& const DirectorylPtr&);
private:
Lines _lines;
|

typedef lceUtil::Handle<Filel> FilelPtr;

class Directoryl : virtual public Directory, virtual public Nodel {
public:
virtual NodeSeq list(const lce::Currentg&);
Directoryl (const Ice::Conmuni catorPtr& const std::string& const DirectorylPtr&);
voi d addChil d(const Fil esystem : NodePrx&) ;
private:
Fi | esystem : NodeSeq _contents;

h

The Servant Implementation in C++

The implementation of our servants is mostly trivial, following from the class definitions in our Fi | esyst enl . h header file.

Implementing Fi | el

The implementation of the r ead and wr i t e operations for files is trivial: we simply store the passed file contents in the _| i nes data member. The
constructor is equally trivial, simply passing its arguments through to the Nodel base class constructor:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

C++

Fi | esystem : Li nes
Filesystem:Filel::read(const Ice::Current&)

{ return _lines;
}
voi d
Filesystem:Filel::wite(const Filesystem:Lines& text, const |ce::Current&)
{
_lines = text;
}

Filesystem:Filel::Filel(const Ice:: ConmunicatorPtr& communi cator,
const string& nane,
const Directoryl Ptr& parent)
Nodel (communi cat or, nane, parent)

Implementing Di r ect or yl

The implementation of Di r ect or yl is equally trivial: the | i st operation simply returns the _cont ent s data member and the constructor passes its
arguments through to the Nodel base class constructor:

C++

Fi | esyst em : NodeSeq
Filesystem:Directoryl::list(const |ce::Current&)

{
}

return _contents;

Filesystem:Directoryl::Directoryl(const |ce::ComunicatorPtr& communi cat or,
const string& nane,
const Directoryl Ptr& parent)
Nodel (nane, parent)
{
}

voi d
Fil esystem: Directoryl::addChil d(const NodePrx chil d)
{

}

_contents. push_back(child);

The only noteworthy thing is the implementation of addChi | d: when a new directory or file is created, the constructor of the Nodel base class calls a
ddChi | d on its own parent, passing it the proxy to the newly-created child. The implementation of addChi | d appends the passed reference to the
contents list of the directory it is invoked on (which is the parent directory).

Implementing Nodel

The name operation of our Nodel class is again trivial: it simply returns the _nane data member:

Copyright © 2017, ZeroC, Inc.

12

Ice 3.5.1 Documentation

C++

std::string

Fil esystem : Nodel : : nane(const Ice::Current&)
{

return _nane;

}

The Nodel constructor creates an identity for the servant:

C++

Fi | esyst em : Nodel : : Nodel (const | ce:: Communi cat or Pt r & conmuni cat or,
const string& nane,
const Directoryl Ptr& parent)
_name(nane), _parent(parent)

_id.name = parent ? lceUtil::generateUUD() : "RootDir";

For the root directory, we use the fixed identity " Root Di r " . This allows the client to create a proxy for the root directory. For directories other than

the root directory, we use a UUID as the identity.

Finally, Nodel provides the act i vat e member function that adds the servant to the ASM and connects the child node to its parent directory:

C++

voi d
Fil esystem : Nodel : : acti vate(const |ce:: Object AdapterPtr& a)
{
NodePr x thi sNode = NodePrx: : uncheckedCast (a->add(this, _id));
if(_parent)
{
_par ent - >addChi | d(t hi sNode) ;

}

This completes our servant implementation. The complete source code is shown here once more:

C++

#include <lceUtil/lceltil.h>
#i ncl ude <Filesystem .h>

usi ng nanespace std;
/1 Slice Node::name() operation

std::string
Fi | esystem : Nodel : : nane(const Ice::Current&)
{

return _nane;

}
/1 Nodel constructor

Fi | esystem : Nodel : : Nodel (const | ce:: Communi cat or Pt r & conmuni cat or,
const string& nane,
const Directoryl Ptr& parent)
_nanme(nane), _parent(parent)

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=14680620
https://doc.zeroc.com/pages/viewpage.action?pageId=14680650#ObjectIncarnationinC++-uuid

13

Ice 3.5.1 Documentation

/] Create an identity. The root directory has the fixed identity "RootDir"

/1
_id.name = parent ? lceUtil::generateUUD() : "RootDir";
}

/1 Nodel activate() menber function
voi d

Fil esystem : Nodel : : activate(const |ce:: Object AdapterPtr& a)

{
NodePr x t hi sNode = NodePr x: : uncheckedCast (a->add(this, _id));
i f(_parent)

_par ent ->addChi | d(t hi sNode) ;
}
/1 Slice File::read() operation
Fi | esystem : Li nes
Filesystem:Filel::read(const Ice::Current&)

{
}

return _lines;

I/l Slice File::wite() operation
voi d
Filesystem:Filel::wite(const Filesystem:Lines& text, const Ice:

{
}

_lines = text;

/'l Filel constructor

Filesystem:Filel::Filel(const Ice:: ConmunicatorPtr& communi cator,
const string& nane,
const Directoryl Ptr& parent)
Nodel (communi cat or, nane, parent)
{
}

I/l Slice Directory::list() operation

Fi | esyst em : NodeSeq
Filesystem:Directoryl::list(const lce::Current& c)

{

return _contents,;

}

/1 Directoryl constructor

:Current &

Filesystem:Directoryl::Directoryl (const |ce::Comuni catorPtr& communi cat or,

const string& nane,
const Directoryl Ptr& parent)
Nodel (conmmuni cat or, nane, parent)
{
}

/] addChild is called by the child in order to add
Il itself to the _contents nmenber of the parent

voi d
Fil esystem :Directoryl::addChil d(const NodePrx& child)
{

Copyright © 2017, ZeroC, Inc.

14

Ice 3.5.1 Documentation

_contents. push_back(child);

See Also

Slice for a Simple File System
Example of a File System Client in C++
The I ce: : Appl i cati on Class

C++ Mapping for Sequences

slice2cpp Command-Line Options
UUIDs as ldentities in C++

Threads and Concurrency with C++

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/pages/viewpage.action?pageId=14680620
https://doc.zeroc.com/pages/viewpage.action?pageId=14680649#TheServerSidemainFunctioninC++-application
https://doc.zeroc.com/pages/viewpage.action?pageId=14680630
https://doc.zeroc.com/display/Ice35/slice2cpp+Command-Line+Options
https://doc.zeroc.com/pages/viewpage.action?pageId=14680650#ObjectIncarnationinC++-uuid
https://doc.zeroc.com/pages/viewpage.action?pageId=14680294

	Example of a File System Server in C++

