
Ice Touch 1.1.1 Release Notes
Ice Touch offers an Objective-C language mapping, an Ice run time for iOS and Mac OS X, and an Xcode SDK for Cocoa and iOS applications.

The Ice Touch distribution does not include any Ice services, but its support for the complete Ice protocol means that your Ice Touch applications can work
seamlessly with existing Ice servers as well as Ice services such as IceGrid, Glacier2, and IceStorm.

On this page:

New features in Ice Touch 1.1
Changes and fixes in Ice Touch 1.1.1
Changes and fixes in IceTouch 1.1.0
Features added in Ice Touch 1.1.0

Accessory transport
New AMI mapping
New Dispatcher facility
New Slice syntax for default values
Support for background applications

Corresponding Ice release
Upgrading your application from Ice Touch 1.1.0
Upgrading your application from Ice Touch 1.0.0

Xcode project settings
Source installation

Ice Touch feature set
SSL support
Logger notes
Garbage collection requirements
Auto release pool
Xcode project settings
Accessory transport
Running iPhone tests with Xcode 3.2 & iOS 4.2
Known Problems in Ice Touch 1.1.1

test/Ice/operations with Xcode 3.2 on Mac OS X

Back to Top ^

New features in Ice Touch 1.1
This section outlines changes and improvements in this release that may affect the operation of your applications or have an impact on your source code.

For a detailed list of the changes in this release, please refer to the CHANGES file included in your Ice Touch distribution.

Changes and fixes in Ice Touch 1.1.1

Added support for Xcode 3.2, Xcode 4.0, and Xcode 4.1 to the Ice Touch Xcode plug-in.

Updated Ice Touch to support iOS 4.3.

Updated Ice Touch to support OS X 10.7 (Lion) and Xcode 4.1.

Updated build system to create fat binaries with both armv6 and armv7 architectures when targeting the iOS SDK.

Updated build system to support Xcode installed in a user-specified location.

Added option to install the Ice Touch iOS and Cocoa SDKs in a user-specified location; this way, you can install Xcode 3.2, Xcode 4.0, and Ice
Touch for both versions of Xcode on the same system.

Back to Top ^

Changes and fixes in IceTouch 1.1.0

Replaced the AMI mapping. Applications that use the AMI mapping from Ice Touch 1.0 must be updated. Refer to the for more Ice manual
information on the new mapping.

SSL now works with the iOS simulator.

The iOS simulator builds now use static linking.

The Xcode plug-in now adds to the linker flags. See for more information.-all_load QA1490

The demos and tests were updated to support the iPad screen resolution.

Ice threads are now registered with the garbage collector.

#
http://developer.apple.com/mac/library/qa/qa2006/qa1490.html

The helper has been removed. The new Ice should be used instead. See for more ICECallbackOnMainThread dispatcher facility below
information.

Unmarshaling now supports size checks to prevent memory over allocations by malicious clients or servers.

The Xcode plug-in now supports both 32- and 64-bit architectures.
Back to Top ^

Features added in Ice Touch 1.1.0

Accessory transport

Ice Touch supports a new to enable Ice Touch applications to communicate with accessories connected to an iOS device (via USB or accessory transport
Bluetooth). The accessory must run an Ice server with a custom transport to allow the communication.

Back to Top ^

New AMI mapping

This release features a completely new AMI facility that allows you to structure your code with the same flexibility as the new AMI mapping introduced in
Ice 3.4. Callbacks are now specified using Objective-C blocks to provide much greater flexibility.

Back to Top ^

New Dispatcher facility

In previous releases, the developer of a graphical Ice application would need to take precautions to make sure that updates to the user interface were
performed in the proper thread. For example, graphical applications typically use AMI because it does not block the calling thread, but AMI callbacks are
invoked from an Ice run time thread. Since the callback cannot update the user interface directly from such a thread, it is forced to schedule an update
instead. With Ice Touch 1.0.0, this was facilitated with the helper.ICECallbackOnMainThread

Ice Touch 1.1.0 introduces the same that was added in Ice 3.4. The dispatcher lets you control the thread in which servant methods and dispatcher facility
AMI callbacks are invoked. It is especially useful for a graphical application, in which you can easily install a custom dispatcher to guarantee that all of your
servant and callback invocations are made in a thread that can safely update the user
interface.

For example, to execute all Ice servant methods and AMI callbacks on the main GUI thread, you just need to set up the following dispatcher when
initializing a communicator:

Objective-C

initData.dispatcher = ^(id<ICEDispatcherCall> call, id<ICEConnection> con)
{
 dispatch_sync(dispatch_get_main_queue(), ^ { [call run]; });
};

This technique is demonstrated in the GUI demo applications located in the following directories:

demo/Cocoa
demo/iPhone

Back to Top ^

New Slice syntax for default values

It is now possible to specify in Slice the default values for data members of classes, structures, and exceptions. The semantics are the same as for Slice
constants in that you can only specify default values for a data member whose type is a primitive or enumeration. For example:

Slice

enum Color { red, green, blue };

struct Point
{
 int x = -1;
 int y = -1;
 Color c = blue;
};

#
#

Back to Top ^

Support for background applications

IceTouch 1.1.0 adds support for VoIP applications as documented in .Executing Code in the Background

Follow these steps to ensure your application is correctly configured:

Add the flag to the key of your application's .voip UIBackgroundModes Info.plist

Set the configuration property to in your communicator configuration properties. As described in the Ice.Voip 1 Configuring Sockets for VoIP
, this causes the Ice run time to set the property to for all Usage kCFStreamNetworkServiceType kCFStreamNetworkServiceTypeVoIP

sockets.

Before moving your application to the background, call the method to specify the frequency at which your :setKeepAliveTimeout:handler
application must be woken to maintain your service.

The new sample application provides a demonstration of these steps.demo/iPhone/voip

Back to Top ^

Corresponding Ice release
The Slice definitions included in Ice Touch 1.1.1 are the same as the Slice definitions included in Ice 3.4.2. In particular, the Glacier 2 client library included
in this Ice Touch release (libGlacier2ObjC.a, libGlacier2ObjC.11.dylib) uses the Ice 3.4.2 Glacier2 definitions. If the Glacier2 service in a future Ice release
adds new APIs (such as a new operation, or a new interface, you will need to rebuild this Glacier2ObjC library using the newer Glacier2 Slice definitions to
be able to use these APIs.

Upgrading your application from Ice Touch 1.1.0
Ice Touch 1.1.1 maintains binary compatibility with Ice Touch 1.1.0, therefore you may upgrade your application from Ice Touch 1.1.0 to Ice Touch 1.1.1
without recompiling your Slice files or your program code. However, if your application is linking with libIceObjC.a (a static library), you will need to re-link
your application. Ice Touch supports only static-linking when building for iOS devices, the iOS simulator or Cocoa on OS X.

If you are building Ice Touch 1.1.1 from sources, you need to manually remove the Xcode plug-in installed by Ice Touch 1.1.0 prior to the Ice Touch 1.1.1
installation. To do so, remove the directory containing this plug-in, which can be either /Developer/Library/Xcode/Plug-ins

 or /slice2objcplugin.pbplugin ~/Library/Application Support/Developer/Shared/Xcode/Plug-ins/slice2objcplugin.
.pbplugin

Back to Top ^

Upgrading your application from Ice Touch 1.0.0

Xcode project settings

For Xcode iOS and Cocoa applications, you need to update the project property to match the location of the new Ice Touch SDK ADDITIONAL_SDKS
installation. If you installed the Ice Touch 1.1.1 SDK in the default location, you would use instead /Developer/SDKs/IceTouch-1.1/iphoneos.sdk
of ./Developer/SDKs/IceTouch-1.0/iphoneos.sdk

Source installation

If you are building Ice Touch 1.1.1 from sources, you need to manually remove the Xcode plug-in installed by Ice Touch 1.0.0 prior to the Ice Touch 1.1.1
installation. To do so, remove the directory containing this plug-in, which can be either /Developer/Library/Xcode/Plug-ins

 or /slice2objcplugin.pbplugin ~/Library/Application Support/Developer/Shared/Xcode/Plug-ins/slice2objcplugin.
.pbplugin

Ice Touch feature set
Ice Touch supports the following features:

Objective-C mapping

This topic is described in the .manual

Ice Touch currently lacks support for the following Ice features:

Asynchronous method dispatch (AMD)
Collocation optimization

http://developer.apple.com/library/ios/#documentation/iphone/conceptual/iphoneosprogrammingguide/BackgroundExecution/BackgroundExecution.html
http://developer.apple.com/library/ios/#documentation/iphone/conceptual/iphoneosprogrammingguide/BackgroundExecution/BackgroundExecution.html
http://developer.apple.com/library/ios/#documentation/iphone/conceptual/iphoneosprogrammingguide/BackgroundExecution/BackgroundExecution.html
http://setKeepAliveTimeouthandler
#

Servant locators
Implicit contexts
Protocol plug-ins
Local interfaces
Ice::Application and helper classesIce::Service
Ice::Stats interface

Ice Touch has limited support for:

SSL
See for more information.below

UDP
On the iPhone, UDP requests do not transparently establish a 3G/Edge connection.

Back to Top ^

SSL support
Ice Touch for Mac OS X and Cocoa uses the Ice for C++ SSL protocol plug-in.

For iOS devices, Ice Touch SSL provides only a subset of this functionality. Due to limitations in iOS SSL support, the following restriction applies:

Ice Touch servers cannot authenticate SSL clients.

Furthermore, the semantics of some IceSSL configuration properties have changed, and new properties have been added. The IceSSL property reference
provides complete details.

Back to Top ^

Logger notes
Custom loggers must be installed via . You cannot use any of the Ice for C++ logger properties, such as , ICEInitializationData Ice.UseSyslog
and you cannot install a custom logger with a plug-in ().Ice.Plugin.*

Back to Top ^

Garbage collection requirements
For Mac OS X and Cocoa, the Ice Touch run time is built with garbage collection support.

For iOS devices and the simulator, you must use explicit and because garbage collection is not supported. Consequently, the Ice Touch retain release
run time for iOS cannot garbage collect graphs of objects containing cycles. Consider this Slice definition:

Slice

class Foo
{
Foo next;
};

Suppose we use these definitions as follows:

Objective-C

Foo a = [[Foo alloc] init];
Foo b = [[Foo alloc] init];
a.next = b;
b.next = a;

If you send this graph over the wire, your application will leak memory unless you somehow retain the graph and manually break the cycle.

Back to Top ^

Auto release pool

#

The Ice run time creates an object before each server-side dispatched invocation and client-side AMI callback. The pool is NSAutoReleasePool
released once the dispatch is complete.

Back to Top ^

Xcode project settings
For Cocoa and iOS applications that use the Xcode SDK, you must add the following to :Additional SDKs

/Developer/SDKs/IceTouch-1.1/$(PLATFORM_NAME).sdk

In addition, when creating a new Xcode project for iOS applications, you must set the to:Code Signing Resource Rules Path

$(SDKROOT)/ResourceRules.plist

To set the path, select , press , select the tab, and press .Target Info Build Select

If you do not do this, you will receive an error when signing your application.

You must also add to the Frameworks folder:

CFNetwork.framework
Security.framework
Foundation.framework
ExternalAccessory.framework

Back to Top ^

Accessory transport
The accessory transport enables Ice Touch clients running on an iOS device to communicate with accessories connected either via Bluetooth or USB.

This transport is built on top of the iPhone OS External Accessory framework. In order to use it, proxies must use the following endpoint syntax:

accessory [-p PROTOCOL] [-n NAME] [-m MANUFACTURER] [-o MODELNUMBER]

For example, to invoke on a proxy for the object running on an accessory that implements the protocol, use the hello com.zeroc.helloWorld
following stringified proxy:

 -p com.zeroc.helloWorldhello:accessory

If the option is omitted, the transport will look up an accessory that supports the protocol by default. This protocol string is application--p com.zeroc.ice
defined and must match the protocol string that the accessory advertises.

In order to enable the accessory transport, Ice Touch applications must add properties to the Ice communicator initialization property set using the ICECon
 method.figureAccessoryTransport

For example:

Objective-C

ICEInitializationData* initData = [ICEInitializationData initializationData];
initData.properties = [ICEUtil createProperties];
ICEConfigureAccessoryTransport(initData.properties);
communicator = [[ICEUtil createCommunicator:initData] retain];

This call will add the required properties and ensure that the accessory transport is linked in with your application. The project for your application will need
to include the framework as well.ExternalAccessory

To specify that your application supports a given accessory protocol, you need to set in your project UISupportedExternalAccessoryProtocols Inf
 file as demonstrated below:o.plist

XML

<key>UISupportedExternalAccessoryProtocols</key>
<array>
<string>com.zeroc.helloWorld</string>
</array>

http://helloaccessory

The iPhone hello world demo from the directory demonstrates how to configure the accessory transport.demo/iPhone/hello

In order to use the Ice Touch accessory transport, your accessory must also support running an Ice server that is capable of receiving Ice requests from
Ice Touch over USB or Bluetooth. We can assist you with the implementation of the Ice server-side transport for your accessory. For more information on
this, please contact us at .info@zeroc.com

Back to Top ^

Running iPhone tests with Xcode 3.2 & iOS 4.2
Running the iPhone test applications with Xcode 3.2 and iOS 4.2 requires that you update the "Base SDK" and "Deployment target" of the test project
application; please refer to the INSTALL file included in your Ice Touch distribution for details.

Known Problems in Ice Touch 1.1.1
This section describes known problems in this Ice Touch release.

test/Ice/operations with Xcode 3.2 on Mac OS X

The AMI portion of the Ice operations test fails on Mac OS X when built with Xcode 3.2 with debug information for x64. While the exact cause is unknown,
the error suggests a compiler or run time library issue. The same test runs successfully with Xcode 4.0 (on Mac OS X 10.6) and Xcode 4.1 (on Mac OS X
10.7).

mailto:info@zeroc.com

	Ice Touch 1.1.1 Release Notes

