Ice 3.4.2 Documentation

Dispatching Invocations to User Threads

By default, operation invocations and AMI callbacks are executed by a thread from a thread pool. This behavior is simple and convenient for
applications because they need not concern themselves with thread creation and destruction. However, there are situations where it is necessary to
respond to operation invocations or AMI callbacks in a particular thread. For example, in a server, you might need to update a database that does not
permit concurrent access from different threads or, in a client, you might need to update a user interface with the results of an invocation. (Many Ul
frameworks require all Ul updates to be made by a specific thread.)

In Ice for C++, Java, .NET, and Objective-C, you can control which thread receives operation invocations and AMI callbacks, so you can ensure that
all updates are made by a thread you choose. The implementation techniques vary slightly for each language and are explained in the sections that
follow.

On this page:

C++ Dispatcher API

Java Dispatcher API

C# Dispatcher API

Objective-C Dispatcher API
Dispatcher Implementation Notes

C++ Dispatcher API

To install a dispatcher, you must instantiate a class that derives from | ce: : Di spat cher and initialize a communicator with that instance in the I ni t
i ali zati onDat a structure. All invocations that arrive for this communicator are made via the specified dispatcher. For example:

C++
class MyDi spatcher : public Ice::Dispatcher /*, ... */
I
b
int
mai n(int argc, char* argv[])
{
I ce: : Conmuni cat or Ptr conmuni cat or;
try {
lce::InitializationData initData;
initData.properties = lce::createProperties(argc, argv);
initData.dispatcher = new MyDi spatcher();
comuni cator = Ilce::initialize(argc, argv, initData);
/1
} catch (const Ice::Exception& ex) {
11
}
I

The | ce: : Di spat cher abstract base class has the following interface:

C++
class Dispatcher : virtual public IceUtil:: Shared
{
public:
virtual void dispatch(const DispatcherCallPtr& const ConnectionPtr& = O;
I
typedef Iceltil::Handl e<Di spat cher> Di spatcherPtr;

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Thread+Pools
https://doc.zeroc.com/display/Ice34/Communicator+Initialization

Ice 3.4.2 Documentation

The Ice run time invokes the di spat ch method whenever an operation invocation arrives or an AMI invocation completes, passing an instance of Di
spat cher Cal | and the connection via which the invocation arrived. The job of di spat ch is to pass the incoming invocation to an operation
implementation.

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value may be
nil if no connection currently exists.

You can write di spat ch such that it blocks and waits for completion of the invocation because di spat ch is called by a thread in the server-side
thread pool (for incoming operation invocations) or the client-side thread pool (for AMI callbacks).

The Di spat cher Cal | instance encapsulates all the details of the incoming call. It is another abstract base class with the following interface:

C++

class DispatcherCall : virtual public Iceltil:: Shared
{
public:

virtual ~DispatcherCall() { }

virtual void run() = 0;

}s

typedef IceUtil::Handl e<Di spatcherCall> Di spatcherCallPtr;

Your implementation of di spat ch is expected to call r un on the Di spat cher Cal | instance (or, more commonly, to cause r un to be called some
time later). When you call r un, the Ice run time processes the invocation in the thread that calls r un.

A very simple way to implement di spat ch would be as follows:

C++

class MyDi spatcher : public Ice::Dispatcher

public:
virtual void dispatch(const Ice::DispatcherCallPtr& d, const Ice:: ConnectionPtr)
{
d->run(); // Does not throw, blocks until op conpletes.
}
b

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls di spat ch which, in turn, calls r ur
on the Di spat cher Cal | instance.

With this simple example, di spat ch immediately calls r un, and r un does not return until the corresponding operation invocation is complete. As a
result, this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a Ul from the correct thread.

A common technique to avoid blocking is to use asynchronous method invocation. In response to a Ul event (such as the user pressing a "Submit"
button), the application initiates an operation invocation from the corresponding Ul callback by calling the operation's begi n_ method. This is
guaranteed not to block the caller, so the Ul remains responsive. Some time later, when the operation completes, the Ice run time invokes an AMI
callback from one of the threads in its thread pool. That callback now has to update the Ul, but that can only be done from the Ul thread. By using a
dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can arrange for AMI callbacks to be passed to the
Ul thread with MFC:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=5047916

Ice 3.4.2 Documentation

C++
class MDialog : public Chialog { ... };
class MyDi spatcher : public Ice::Dispatcher {
public:
M/Di spat cher (MyDi al og* di al og) : _di al og(di al og)
{
}
virtual void
di spat ch(const Ice::DispatcherCallPtr& call, const Ice::ConnectionPtr&)
{

_di al og- >Post Message(VWM _AM _CALLBACK, O,
rei nterpret_cast <LPARAM>(new | ce: : Di spatcherCall Ptr(call)));

}

private:
MWD al og* _di al og;
b

The MyDi spat cher class simply stores the CDi al og handle for the Ul and calls Post Message, passing the Di spat cher Cal | instance. In turn,
this causes the Ul thread to receive an event and invoke the Ul callback method that was registered to respond to WM_AM _ CALLBACK events.

In turn, the implementation of the callback method calls r un:

C++
LRESULT
MDi al og: : OnAM Cal | back(WPARAM LPARAM | Par am
{
try {
Ice::DispatcherCall Ptr* call = reinterpret_cast<lce::Di spatcherCallPtr*>(|Paran);
(*call)->run();
delete call;
} catch (const Ice::Exception& ex) {
/1
}
return O;
}

The Ice run time calls di spat ch once the asynchronous operation invocation is complete. In turn, this causes the OnAM Cal | back to trigger, which
calls r un. Because the operation has completed already, r un does not block, so the Ul remains responsive.

Please see the M~C demo in your Ice distribution for a fully-functional Ul client that uses this technique.

Java Dispatcher API

To install a dispatcher, you must instantiate a class that implements | ce. Di spat cher and initialize a communicator with that instance inthe I niti a
I'i zat i onDat a structure. All invocations that arrive for this communicator are made via the specified dispatcher. For example:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Communicator+Initialization

Ice 3.4.2 Documentation

Java

public class MyDi spatcher inplenents |ce.D spatcher

{
/1
}
public class Server
{
public static void
mai n(String[] args)
I ce. Conmmuni cat or conmuni cat or;
try {
Ice.lnitializationData initData = new Ice.lnitializationData();
initData.properties = lce.Uil.createProperties(args);
i nitData.dispatcher = new MyDi spatcher();
comuni cator = lce.Uil.initialize(args, initData);
/1
} catch (lce.Local Exception & ex) { {
/1
}
/1
}
/1
}

The | ce. Di spat cher interface looks as follows:

Java

public interface D spatcher

{

voi d di spat ch(Runnabl e runnabl e, |ce. Connection con);

}

The Ice run time invokes the di spat ch method whenever an operation invocation arrives, passing a Runnabl e and the connection via which the
invocation arrived. The job of di spat ch is to pass the incoming invocation to an operation implementation.

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value may be
null if no connection currently exists.

You can write di spat ch such that it blocks and waits for completion of the invocation because di spat ch is called by a thread in the server-side
thread pool (for incoming operation invocations) or the client-side thread pool (for AMI callbacks).

Your implementation of di spat ch is expected to call r un on the Runnabl e instance (or, more commonly, to cause r un to be called some time
later). When you call r un, the Ice run time processes the invocation in the thread that calls r un.

A very simple way to implement di spat ch would be as follows:

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public class MyDi spatcher inplenents |ce.D spatcher

{
public void
di spat ch(Runnabl e runnabl e, |ce. Connection connecti on)
{
/| Does not throw, blocks until op conpletes.
runnabl e. run();
}
}

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls di spat ch which, in turn, calls r ur
on the Runnabl e instance.

With this simple example, di spat ch immediately calls r un, and r un does not return until the corresponding operation invocation is complete. As a
result, this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a Ul from the correct thread.

A common technique to avoid blocking is to use asynchronous method invocation. In response to a Ul event (such as the user pressing a "Submit"
button), the application initiates an operation invocation from the corresponding Ul callback by calling the operation's begi n_ method. This is
guaranteed not to block the caller, so the Ul remains responsive. Some time later, when the operation completes, the Ice run time invokes an AMI r es
ponse callback from one of the threads in its thread pool. That callback now has to update the Ul, but that can only be done from the Ul thread. By
using a dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can arrange for AMI callbacks to be
passed to the Ul thread with Swing:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Asynchronous+Method+Invocation+%28AMI%29+in+Java

Ice 3.4.2 Documentation

Java

public class Cient extends JFrane

{
public static void nain(final String[] args)
{
Swi ngUtilities.invokelLater(new Runnabl e()
{
public void run()
{
try {
new dient(args);
} catch (Ice.Local Exception e) {
JOpt i onPane. showvessageDi al og(
null, e.toString(),
"Initialization failed",
JOpt i onPane. ERROR_MESSAGE) ;
}
}
IO N
}
Client(String[] args)
{
| ce. Communi cat or conmuni cator;
try {
Ice.lnitializationData initData = new Ice.lnitializationData();
initData.dispatcher = new | ce. Di spatcher()
{
public void
di spat ch(Runnabl e runnabl e, 1ce. Connection connecti on)
{
Swi ngUtilities.invokeLater(runnable);
}
b
communi cator = Ice.Uil.initialize(args, initData);
}
cat ch(Throwabl e ex)
{
/1
/1
}
/1
}

The di spat ch method simply delays the call to r un by calling i nvokelLat er, passing it the Runnabl e that is provided by the Ice run time. This
causes the Swing Ul thread to eventually make the call to r un. Because the Ice run time does not call di spat ch until the asynchronous invocation
is complete, that call to r un does not block and the Ul remains responsive.

Please see the swi ng demo in your Ice distribution for a fully-functional Ul client that uses this technique.

C# Dispatcher API

To install a dispatcher, you must initialize a communicator with a delegate of type | ce. Di spat cher inthe I ni ti al i zati onDat a structure. All
invocations that arrive for this communicator are made via the specified dispatcher. For example:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Communicator+Initialization

Ice 3.4.2 Documentation

C#

public class Server

{
public static void Main(string[] args)
{
| ce. Communi cat or conmuni cator = null;
try {
Ice.lnitializationData initData = new Ice.lnitializationData();
initData.dispatcher = new MyD spat cher (). di spatch;
comuni cator = Ice.Uil.initialize(ref args, initData);
...
} catch (System Exception ex) {
/1
}
/1
}
/1
}

The | ce. Di spat cher delegate is defined as follows:

C#

public del egate void Dispatcher(System Action call, Connection con);

The Ice run time calls your delegate whenever an operation invocation arrives, passing a Syst em Act i on delegate and the connection via which
the invocation arrived. The job of your delegate is to pass the incoming invocation to an operation implementation.

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value may be
null if no connection currently exists.

In this example, the delegate calls a method di spat ch on an instance of a MyDi spat cher class. You can write di spat ch such that it blocks and
waits for completion of the invocation because di spat ch is called by a thread in the server-side thread pool (for incoming operation invocations) or
the client-side thread pool (for AMI callbacks).

Your implementation of di spat ch is expected to invoke the cal | delegate (or, more commonly, to cause it to be invoked some time later). When
you invoke the cal | delegate, the Ice run time processes the invocation in the thread that invokes the delegate.

A very simple way to implement di spat ch would be as follows:

C#

public class MyDi spatcher

{
public void
di spat ch(System Action call, Ice.Connection con)
{
/1 Does not throw, blocks until op conpletes.
call();
}
b

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls di spat ch which, in turn, invokes
the cal | delegate.

With this simple example, di spat ch immediately invokes the delegate, and that call does not return until the corresponding operation invocation is
complete. As a result, this implementation ties up a thread in the thread pool for the duration of the call.

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a Ul from the correct thread.

A common technique to avoid blocking is to use asynchronous method invocation. In response to a Ul event (such as the user pressing a "Submit"
button), the application initiates an operation invocation from the corresponding Ul callback by calling the operation's begi n_ method. This is
guaranteed not to block the caller, so the Ul remains responsive. Some time later, when the operation completes, the Ice run time invokes an AMI
callback from one of the threads in its thread pool. That callback now has to update the Ul, but that can only be done from the Ul thread. By using a
dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can arrange for AMI callbacks to be passed to the
Ul thread with WPF:

C#

public partial class MW ndow : W ndow

{
private void W ndow_Loaded(obj ect sender, EventArgs e)
{
| ce. Communi cat or conmuni cator = null;
try
{
Ice.lnitializationData initData = new Ice.lnitializationData();
i nitData.dispatcher =
del egat e(System Acti on action, |ce.Connection connection)
{
Di spat cher. Begi nl nvoke(Di spatcherPriority. Normal, action);
b
comuni cator = Ice.Uil.initialize(initData);
}
catch(lce. Local Excepti on ex)
{
/1
}
}
/1
}

The delegate calls Di spat cher. Begi nl nvoke on the act i on delegate. This causes WPF to queue the actual asynchronous invocation of act i on
for later execution by the Ul thread. Because the Ice run time does not invoke your delegate until an asynchronous operation invocation is complete,
when the Ul thread executes the corresponding call to the Endl nvoke method, that call does not block and the Ul remains responsive.

The net effect is that you can invoke an operation asynchronously from a Ul callback method without the risk of blocking the Ul thread. For example:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Asynchronous+Method+Invocation+%28AMI%29+in+C-Sharp

Ice 3.4.2 Documentation

C#

public partical class MyWndow : W ndow

{
private void someQp_dick(object sender, RoutedEventArgs e)
{
MintfPrx p =...;
/1 Call renpte operation asynchronously.
/] Response is processed in U thread.
p. begi n_soneOp() . whenConpl et ed(t hi s. opResponse, this.opException);
}
public voi d opResponse()
{
/1 Update Ul ...
}
public void opException(lce. Exception ex)
{
/1 Update Ul ...
}
}

Please see the wpf demo in your Ice distribution for a fully-functional Ul client that uses this technique.

Objective-C Dispatcher API

To install a dispatcher, you must initialize a communicator with a callback (as an Objective-C block) in the | CEl ni ti al i zat i onDat a structure. All
invocations that arrive for this communicator are made via the specified callback. For example:

Objective-C

int
mai n(int argc, char* argv[])
{
obj c_startCol | ector Thread();
i d<I CEConmuni cat or > conmuni cator = nil;
@ry
{
ICEInitializationData* initData = [ICEInitializationData initializationData];
initData.dispatcher =

A(id<I CEDi spatcherCall> call, id<lCEConnection> con)
{
/1
b
comuni cator = [ICEUti| createConmunicator: &rgc argv:argv initData:initDatal;
/1
}
@at ch(| CELocal Excepti on* ex)
{
/1
}
/1

The type of the dispatcher callback must match the following block signature:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Communicator+Initialization

10

Ice 3.4.2 Documentation

Objective-C

voi d(”) (i d<I CEDi spatcherCal | > cal |, id<lCEConnection> connection)

The Ice run time invokes the dispatcher callback whenever an operation invocation arrives, passing an object implementing the | CEDi spat cher Cal |
protocol and the connection via which the invocation arrived. The job of your callback implementation is to execute the given call.

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value may be
nil if no connection currently exists.

You can write the callback such that it blocks and waits for completion of the invocation because the callback is called by a thread in the server-side
thread pool (for incoming operation invocations) or the client-side thread pool (for AMI callbacks).

The | CEDi spat cher Cal | protocol defines how to execute the incoming call:

Objective-C

@r ot ocol | CEDi spatcherCall <NSObj ect >
-(void) run;

@nd

Your callback is expected to call r un on the | CEDi spat cher Cal | instance (or, more commonly, to cause run to be called some time later). When
you call r un, the Ice run time processes the invocation in the thread that calls r un.

A very simple way to implement the dispatcher callback would be as follows:

Objective-C

voi d(~nmyDi spat cher) (i d<I CEDi spat cherCal | >, id<lI CEConnecti on>) =
(i d<l CED spatcherCall> call, id<lCEConnecti on> con)
{
/1 Does not throw, blocks until op conpletes.
[call run];

3

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls the dispatcher callback which, in
turn, invokes the run method on the call.

With this simple example, the dispatcher callback immediately invokes r un, and r un does not return until the corresponding operation invocation is
complete. As a result, this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a Ul from the correct thread.

A common technique to avoid blocking is to use asynchronous method invocation. In response to a Ul event (such as the user pressing a "Submit"
button), the application initiates an operation invocation from the corresponding Ul callback by calling the operation's begi n_ method. This is
guaranteed not to block the caller, so the Ul remains responsive. Some time later, when the operation completes, the Ice run time invokes an AMI
callback from one of the threads in its thread pool. That callback now has to update the Ul, but that can only be done from the Ul thread. By using a
dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can arrange for AMI callbacks to be passed to
Cocoa or Cocoa Touch main thread:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Asynchronous+Method+Invocation+%28AMI%29+in+Objective-C

Ice 3.4.2 Documentation

Objective-C

- (voi d) vi ewhi dLoad

{
ICEInitializationData* initData = [ICEInitializationData initializationData];
i ni t Dat a. di spatcher =
(i d<l CED spatcherCall> call, id<lCEConnecti on> con)
{
di spatch_sync(di spatch_get_mai n_queue(), ~ { [call run]; });
b
comuni cator = [[ICEUil createComunicator:initData] retain];
/1
}

The dispatcher callback calls di spat ch_sync on the main queue. This queues the actual call for later execution by the main thread. Because the
Ice run time does not invoke the dispatcher callback until an asynchronous operation invocation is complete, when the Ul thread executes the
corresponding call, that call does not block and the Ul remains responsive.

The net effect is that you can invoke an operation asynchronously from a Ul callback method without the risk of blocking the Ul thread. For example:

Objective-C

- (voi d) someQp: (i d) sender

{
id<MyIntfPrx>p = ...;
[p begin_soneOp: { [self response]; }
exception: ~(| CEException* ex) { [self exception:ex]; }1;
}

-(void) response

/'l Update Ul ...
}
-(void) exception: (| CEException* ex)
{
/'l Update Ul ...
}

Please see the Cocoa or iPhone demos in your Ice Touch distribution for fully-functional Ul clients that use this technique.

Dispatcher Implementation Notes

An application that uses a custom dispatcher must adhere to the following rules to avoid a deadlock:

® Dispatcher implementations must ensure that all requests are dispatched. Failing to dispatch all requests will cause Conmuni cat or : :
dest r oy to hang indefinitely. If a dispatcher has resources that must be reclaimed (e.g., joining with a helper thread), it can safely do so
after Communi cat or : : dest r oy has completed.

* Never make a blocking invocation from the dispatch thread, such as a synchronous proxy operation or a proxy method that can potentially
block, such as i ce_get Connect i on. These invocations depend on the dispatcher for their own completion, therefore blocking the dispatch
thread will inevitably lead to deadlock.

See Also

Asynchronous Method Invocation
Asynchronous Method Invocation
Asynchronous Method Invocation
Asynchronous Method Invocation

AMI) in C++

AMI) in Java

AMI) in C-Sharp
AMI) in Objective-C

—~~~

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=5047916
https://doc.zeroc.com/display/Ice34/Asynchronous+Method+Invocation+%28AMI%29+in+Java
https://doc.zeroc.com/display/Ice34/Asynchronous+Method+Invocation+%28AMI%29+in+C-Sharp
https://doc.zeroc.com/display/Ice34/Asynchronous+Method+Invocation+%28AMI%29+in+Objective-C

	Dispatching Invocations to User Threads

