
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Self-Referential Classes
Classes can be self-referential.

For example:

Slice

class Link {
 SomeType value;
 Link next;
};

This looks very similar to the , but the semantics are very different. Note that and are data members, self-referential interface example value next
not operations, and that the type of is (). As you would expect, this forms the same linked list arrangement as the next Link not Link* Link
interface in : each instance of a class contains a member that points at the next link in the chain; the final link's Self-Referential Interfaces Link next

 member contains a null value. So, what looks like a class including itself really expresses pointer semantics: the data member contains a next next
pointer to the next link in the chain.

You may be wondering at this point what the difference is then between the interface in and the class shown Link Self-Referential Interfaces Link
above. The difference is that classes have semantics, whereas proxies have semantics. To illustrate this, consider the value reference Link interface
from once more:Self-Referential Interfaces

Slice

interface Link {
 idempotent SomeType getValue();
 idempotent Link* next();
};

Here, and are both operations and the return value of is , that is, next returns a . A proxy has getValue next next Link* proxy reference
semantics, that is, it denotes an object somewhere. If you invoke the operation on a proxy, a message is sent to the (possibly getValue Link
remote) servant for that proxy. In other words, for proxies, the object stays put in its server process and we access the state of the object via remote
procedure calls. Compare this with the definition of our :Link class

Slice

class Link {
 SomeType value;
 Link next;
};

Here, and are data members and the type of next is , which has semantics. In particular, while looks and feels like a value next Link value next
pointer, . This means that if we have a chain of instances, all of the instances are in it cannot denote an instance in a different address space Link
our local address space and, when we read or write a value data member, we are performing local address space operations. This means that an
operation that returns a instance, such as , does not just return the head of the chain, , as shown:Link getHead but the entire chain

https://doc.zeroc.com/display/Ice35/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces
https://doc.zeroc.com/display/Ice35/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces
https://doc.zeroc.com/display/Ice35/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces
https://doc.zeroc.com/display/Ice35/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Class version of before and after calling .Link getHead

On the other hand, for the interface version of , we do not know where all the links are physically implemented. For example, a chain of four Link
links could have each object instance in its own physical server process; those server processes could be each in a different continent. If you have a
proxy to the head of this four-link chain and traverse the chain by invoking the operation on each link, you will be sending four remote next
procedure calls, one to each object.

Self-referential classes are particularly useful to model graphs. For example, we can create a simple expression tree along the following lines:

Slice

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {};

class UnaryOperator extends Node {
 UnaryOp operator;
 Node operand;
};

class BinaryOperator extends Node {
 BinaryOp op;
 Node operand1;
 Node operand2;
};

class Operand extends Node {
 long val;
};

The expression tree consists of leaf nodes of type , and interior nodes of type and , with one or two Operand UnaryOperator BinaryOperator
descendants, respectively. All three of these classes are derived from a common base class . Note that is an empty class. This is one of Node Node
the few cases where an empty base class is justified. (See the discussion on ; once we add to this class hierarchy, the empty interfaces operations
base class is no longer empty.)

If we write an operation that, for example, accepts a parameter, passing that parameter results in transmission of the entire tree to the server:Node

Slice

interface Evaluator {
 long eval(Node expression); // Send entire tree for evaluation
};

https://doc.zeroc.com/display/Ice35/Interface+Inheritance#InterfaceInheritance-EmptyInterfaces
https://doc.zeroc.com/display/Ice35/Classes+with+Operations

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Self-referential classes are not limited to acyclic graphs; the Ice run time permits loops: it ensures that no resources are leaked and that infinite loops
are avoided during marshaling.

See Also

Classes with Operations
Self-Referential Interfaces

https://doc.zeroc.com/display/Ice35/Classes+with+Operations
https://doc.zeroc.com/display/Ice35/Interface+Inheritance#InterfaceInheritance-Self-ReferentialInterfaces

	Self-Referential Classes

