
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Using IceGrid Deployment
Here we extend the capabilities of our using IceGrid's deployment facility.sample application

On this page:

Ripper Architecture using Deployment
Ripper Deployment Descriptors
Ripper Registry and Node Configuration
Ripper Server Configuration using Deployment
Starting the Node for the Ripper Application
Deploying the Ripper Application
Ripper Progress Review
Adding Nodes to the Ripper Application

Descriptor Changes
Configuration Changes
Redeploying the Application
Client Changes

Ripper Architecture using Deployment
The revised architecture for our application consists of a single IceGrid node responsible for our encoding server that runs on the computer named Co

. The illustration below shows the client's initial invocation on its indirect proxy and the actions that IceGrid takes to make this mputeServer
invocation possible:

Architecture for deployed ripper application.

In contrast to the , we no longer need to manually start our server. In this revised application, the client's locate request prompts the initial architecture
registry to query the node about the server's state and start it if necessary. Once the server starts successfully, the locate request completes and
subsequent client communication occurs directly with the server.

Ripper Deployment Descriptors
We can deploy our application using the , but first we must define our descriptors in XML. The descriptors are command line utilityicegridadmin
quite brief:

XML

<icegrid>
 <application name="Ripper">
 <node name="Node1">
 <server id="EncoderServer" exe="/opt/ripper/bin/server" activation="on-demand">
 <adapter name="EncoderAdapter" id="EncoderAdapter" endpoints="tcp"/>
 </server>
 </node>
 </application>
</icegrid>

https://doc.zeroc.com/display/Ice34/Getting+Started+with+IceGrid
https://doc.zeroc.com/display/Ice34/Getting+Started+with+IceGrid
https://doc.zeroc.com/display/Ice34/IceGrid+Administrative+Utilities#IceGridAdministrativeUtilities-IceGridCommandLineUtility

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

For IceGrid's purposes, we have named our application . It consists of a single server, , assigned to the node .Ripper EncoderServer Node1

The server's attribute supplies the pathname of its executable, and the attribute indicates that the server should be exe activation activated on
 when necessary.demand

The object adapter's descriptor is the most interesting. As you can see, the and attributes both specify the value . The name id EncoderAdapter
value of reflects the adapter's name in the server process (i.e., the argument passed to) that is used for configuration name createObjectAdapter
purposes, whereas the value of uniquely identifies the adapter within the registry and is used in indirect proxies. These attributes are not required id
to have the same value. Had we omitted the attribute, IceGrid would have composed a unique value by combining the server name and adapter id
name to produce the following identifier:

EncoderServer.EncoderAdapter

The attribute defines one or more for the adapter. As explained , these endpoints do not require a fixed port.endpoints endpoints earlier

Refer to the for detailed information on using XML to define descriptors.XML reference

Ripper Registry and Node Configuration
In our , we created the directory for use by the registry. The node also needs a subdirectory for initial registry configuration /opt/ripper/registry
its own purposes, so we will use . Again, these directories must exist before starting the registry and node./opt/ripper/node

We also need to create an Ice configuration file to hold required by the registry and node. The file contains the properties /opt/ripper/config
following properties:

Registry properties
IceGrid.Registry.Client.Endpoints=tcp -p 4061
IceGrid.Registry.Server.Endpoints=tcp
IceGrid.Registry.Internal.Endpoints=tcp
IceGrid.Registry.AdminPermissionsVerifier=IceGrid/NullPermissionsVerifier
IceGrid.Registry.Data=/opt/ripper/registry

Node properties
IceGrid.Node.Endpoints=tcp
IceGrid.Node.Name=Node1
IceGrid.Node.Data=/opt/ripper/node
IceGrid.Node.CollocateRegistry=1
Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

The registry and node can share this configuration file. In fact, by enabling , we have indicated that the IceGrid.Node.CollocateRegistry
registry and node should run in the same process.

One difference from our is that we no longer define . By omitting this property, we initial configuration IceGrid.Registry.DynamicRegistration
force the registry to reject the registration of object adapters that have not been deployed.

The node properties are explained below:

IceGrid.Node.Endpoints
This property specifies the node's endpoints. A fixed port is not required.

IceGrid.Node.Name
This property defines the unique name for this node. Its value must match the descriptor we wrote above.

IceGrid.Node.Data
This property specifies the node's data directory.

Ice.Default.Locator
This property is defined for use by the tool. The node would also require this property if the registry is not collocated. Refer icegridadmin
to our discussion of the for more information on this setting.ripper client configuration

Since a computer typically runs only one node process, you might be tempted to give the node a name that identifies its host (such as Com
). However, this naming convention becomes problematic as soon as you need to migrate the node to another host.puteServerNode

https://doc.zeroc.com/display/Ice34/IceGrid+Server+Activation
https://doc.zeroc.com/display/Ice34/IceGrid+Server+Activation
https://doc.zeroc.com/display/Ice34/Creating+an+Object+Adapter
https://doc.zeroc.com/display/Ice34/Object+Adapter+Endpoints
https://doc.zeroc.com/display/Ice34/Getting+Started+with+IceGrid#GettingStartedwithIceGrid-RipperServerConfiguration
https://doc.zeroc.com/display/Ice34/IceGrid+XML+Reference
https://doc.zeroc.com/display/Ice34/Getting+Started+with+IceGrid#GettingStartedwithIceGrid-RipperRegistryConfiguration
https://doc.zeroc.com/display/Ice34/IceGrid+Properties
https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Node.CollocateRegistry
https://doc.zeroc.com/display/Ice34/Getting+Started+with+IceGrid#GettingStartedwithIceGrid-RipperRegistryConfiguration
https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Registry.DynamicRegistration
https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Node.AdapterProperty
https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Node.Name
https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Node.Data
https://doc.zeroc.com/display/Ice34/Ice+Default+and+Override+Properties#IceDefaultandOverrideProperties-Ice.Default.Locator
https://doc.zeroc.com/display/Ice34/IceGrid+Administrative+Utilities#IceGridAdministrativeUtilities-IceGridCommandLineUtility
https://doc.zeroc.com/display/Ice34/Getting+Started+with+IceGrid#GettingStartedwithIceGrid-RipperClientConfiguration

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Ripper Server Configuration using Deployment
Server configuration is accomplished using descriptors. During deployment, the node creates a subdirectory tree for each server. Inside this tree the
node creates a configuration file containing properties derived from the server's descriptors. For instance, the adapter's generates the descriptor
following properties in the server's configuration file:

Server configuration
Ice.Admin.ServerId=EncoderServer
Ice.Admin.Endpoints=tcp -h 127.0.0.1
Ice.ProgramName=EncoderServer
Object adapter EncoderAdapter
EncoderAdapter.Endpoints=tcp
EncoderAdapter.AdapterId=EncoderAdapter
Ice.Default.Locator=IceGrid/Locator:default -p 4061

As you can see, the configuration file that IceGrid generates from the descriptor resembles the , with two additional properties:initial configuration

Ice.Admin.ServerId
Ice.Admin.Endpoints

These properties enable the that, among other features, allows an IceGrid node to gracefully deactivate the server.administrative facility

Using the directory structure we established for our ripper application, the configuration file for has the file name shown below:EncoderServer

/opt/ripper/node/servers/EncoderServer/config/config

Note that this file should not be edited directly because any changes you make are lost the next time the node regenerates the file. The correct way
to add properties to the file is to include property definitions in the server's descriptor. For example, we can add the property Ice.Trace.Network=1
by modifying the server descriptor as follows:

<icegrid>
 <application name="Ripper">
 <node name="Node1">
 <server id="EncoderServer" exe="/opt/ripper/bin/server" activation="on-demand">
 <adapter name="EncoderAdapter" id="EncoderAdapter" endpoints="tcp"/>
 <property name="Ice.Trace.Network" value="1"/>
 </server>
 </node>
 </application>
</icegrid>

When a node activates a server, it passes the location of the server's configuration file using the command-line argument. If you --Ice.Config
start a server manually from a command prompt, you must supply this argument yourself.

Starting the Node for the Ripper Application
Now that the configuration file is written and the directory structure is prepared, we are ready to start the IceGrid registry and node. Using a
collocated registry and node, we only need to use one command:

$ icegridnode --Ice.Config=/opt/ripper/config

Additional are supported, including those that allow the node to run as a Windows service or Unix daemon.command line options

Deploying the Ripper Application
With the registry up and running, it is now time to deploy our application. Like our client, the utility also requires a definition for the icegridadmin Ic

 property. We can start the utility with the following command:e.Default.Locator

https://doc.zeroc.com/display/Ice34/Getting+Started+with+IceGrid#GettingStartedwithIceGrid-RipperServerConfiguration
https://doc.zeroc.com/display/Ice34/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.ServerId
https://doc.zeroc.com/display/Ice34/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.AdapterProperty
https://doc.zeroc.com/display/Ice34/IceGrid+and+the+Administrative+Facility
https://doc.zeroc.com/display/Ice34/Ice+Configuration+Property
https://doc.zeroc.com/display/Ice34/icegridnode
https://doc.zeroc.com/display/Ice34/Ice+Default+and+Override+Properties#IceDefaultandOverrideProperties-Ice.Default.Locator
https://doc.zeroc.com/display/Ice34/Ice+Default+and+Override+Properties#IceDefaultandOverrideProperties-Ice.Default.Locator

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

$ icegridadmin --Ice.Config=/opt/ripper/config

After confirming that it can contact the registry, provides a command prompt at which we deploy our application. Assuming our icegridadmin
descriptor is stored in , the deployment command is shown below:/opt/ripper/app.xml

>>> application add "/opt/ripper/app.xml"

Next, confirm that the application has been deployed:

>>> application list
Ripper

You can start the server using this command:

>>> server start EncoderServer

Finally, you can retrieve the current endpoints of the object adapter:

>>> adapter endpoints EncoderAdapter

If you want to experiment further using , issue the command and review the .icegridadmin help available commands

Ripper Progress Review
We have deployed our first IceGrid application, but you might be questioning whether it was worth the effort. Even at this early stage, we have
already gained several benefits:

We no longer need to manually start the encoder server before starting the client, because the IceGrid node automatically starts it if it is not
active at the time a client needs it. If the server happens to terminate for any reason, such as an IceGrid administrative action or a server
programming error, the node restarts it without intervention on our part.
We can manage the application remotely using one of the IceGrid administration tools. The ability to remotely modify applications, start and
stop servers, and inspect every aspect of your configuration is a significant advantage.

Admittedly, we have not made much progress yet in our stated goal of improving the performance of the ripper over alternative solutions that are
restricted to running on a single computer. Our client now has the ability to easily delegate the encoding task to a server running on another
computer, but we have not achieved the parallelism that we really need. For example, if the client created a number of encoders and used them
simultaneously from multiple threads, the encoding performance might actually be than simply encoding the data directly in the client, as the worse
remote computer would likely slow to a crawl while attempting to task-switch among a number of processor-intensive tasks.

Adding Nodes to the Ripper Application
Adding more nodes to our environment would allow us to distribute the encoding load to more compute servers. Using the techniques we have
learned so far, let us investigate the impact that adding a node would have on our descriptors, configuration, and client application.

Descriptor Changes

The addition of a node is mainly an exercise in cut and paste:

https://doc.zeroc.com/display/Ice34/IceGrid+Administrative+Utilities#IceGridAdministrativeUtilities-IceGridCommandLineUtility

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

XML

<icegrid>
 <application name="Ripper">
 <node name="Node1">
 <server id="EncoderServer1" exe="/opt/ripper/bin/server" activation="on-demand">
 <adapter name="EncoderAdapter" endpoints="tcp"/>
 </server>
 </node>
 <node name="Node2">
 <server id="EncoderServer2" exe="/opt/ripper/bin/server" activation="on-demand">
 <adapter name="EncoderAdapter" endpoints="tcp"/>
 </server>
 </node>
 </application>
</icegrid>

Note that we now have two elements instead of a single one. You might be tempted to simply use the host name as the node name. However, node
in general, that is not a good idea. For example, you may want to run several IceGrid nodes on a single machine (for example, for testing). Similarly,
you may have to rename a host at some point, or need to migrate a node to a different host. But, unless you also rename the node, that leads to the
situation where you have a node with the name of a (possibly obsolete) host when the node in fact is not running on that host. Obviously, this makes
for a confusing configuration — it is better to use abstract node names, such as .Node1

Aside from the new element, notice that the server identifiers must be unique. The adapter name, however, can remain as node EncoderAdapter
because this name is used only for local purposes within the server process. In fact, using a different name for each adapter would actually
complicate the server implementation, since it would somehow need to discover the name it should use when creating the adapter.

We have also removed the attribute from our adapter descriptors; the supplied by IceGrid are sufficient for our purposes.id default values

Configuration Changes

We can continue to use the configuration file we created for our combined registry-node process. We need a separate configuration file for earlier Nod
, primarily to define a different value for the property . However, we also cannot have two nodes configured with e2 IceGrid.Node.Name IceGrid.

 because only one master registry is allowed, so we must remove this property:Node.CollocateRegistry

IceGrid.Node.Endpoints=tcp
IceGrid.Node.Name=Node2
IceGrid.Node.Data=/opt/ripper/node

Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost -p 4061

We assume that refers to a local file system directory on the computer hosting , and not a shared volume, because two /opt/ripper/node Node2
nodes must not share the same data directory.

We have also modified the locator proxy to include the address of the host on which the registry is running.

Redeploying the Application

After saving the new descriptors, you need to redeploy the application. Using , issue the following command:icegridadmin

$ icegridadmin --Ice.Config=/opt/ripper/config
>>> application update "/opt/ripper/app.xml"

Client Changes

We have added a new node, but we still need to modify our client to take advantage of it. As it stands now, our client can delegate an encoding task
to one of the two objects. The client selects a factory by using the appropriate indirect proxy:MP3EncoderFactory

factory@EncoderServer1.EncoderAdapter
factory@EncoderServer2.EncoderAdapter

https://doc.zeroc.com/display/Ice34/Adapter+Descriptor+Element
https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Node.Name
https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Node.CollocateRegistry
https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Node.CollocateRegistry

Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

In order to distribute the tasks among both factories, the client could use a random number generator to decide which factory receives the next task:

C++

string adapter;
if ((rand() % 2) == 0)
 adapter = "EncoderServer1.EncoderAdapter";
else
 adapter = "EncoderServer2.EncoderAdapter";
Ice::ObjectPrx proxy = communicator->stringToProxy("factory@" + adapter);
Ripper::MP3EncoderFactoryPrx factory = Ripper::MP3EncoderFactoryPrx::checkedCast(proxy);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

There are a few disadvantages in this design:

The client application must be modified each time a new compute server is added or removed because it knows all of the adapter identifiers.
The client cannot distribute the load intelligently; it is just as likely to assign a task to a heavily-loaded computer as it is an idle one.

We describe better solutions in the sections that follow.

See Also

IceGrid Server Activation
Creating an Object Adapter
Object Adapter Endpoints
Getting Started with IceGrid
IceGrid Administrative Utilities
IceGrid and the Administrative Facility
icegridnode
Adapter Descriptor Element
IceGrid Properties

https://doc.zeroc.com/display/Ice34/IceGrid+Server+Activation
https://doc.zeroc.com/display/Ice34/Creating+an+Object+Adapter
https://doc.zeroc.com/display/Ice34/Object+Adapter+Endpoints
https://doc.zeroc.com/display/Ice34/Getting+Started+with+IceGrid
https://doc.zeroc.com/display/Ice34/IceGrid+Administrative+Utilities
https://doc.zeroc.com/display/Ice34/IceGrid+and+the+Administrative+Facility
https://doc.zeroc.com/display/Ice34/icegridnode
https://doc.zeroc.com/display/Ice34/Adapter+Descriptor+Element
https://doc.zeroc.com/display/Ice34/IceGrid+Properties

	Using IceGrid Deployment

