
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Tie Classes in Java
The mapping to requires the servant class to inherit from its skeleton class. Occasionally, this creates a problem: some class skeleton classes
libraries require you to inherit from a base class in order to access functionality provided by the library; because Java does not support multiple
implementation inheritance, this means that you cannot use such a class library to implement your servants because your servants cannot inherit
from both the library class and the skeleton class simultaneously.

To allow you to still use such class libraries, Ice provides a way to write servants that replaces inheritance with delegation. This approach is
supported by . The idea is that, instead of inheriting from the skeleton class, you simply create a class (known as an tie classes implementation class
or) that contains methods corresponding to the operations of an interface. You use the option with the compiler delegate class --tie slice2java
to create a tie class. For example, the option causes the compiler to create exactly the same code for the as we saw --tie interfaceNode
previously, but to also emit an additional tie class. For an interface , the generated tie class has the name <interface-name> _<interface-

:Tiename>

https://doc.zeroc.com/display/Ice34/Server-Side+Java+Mapping+for+Interfaces#ServerSideJavaMappingforInterfaces-skeleton
https://doc.zeroc.com/display/Ice34/Server-Side+Java+Mapping+for+Interfaces#ServerSideJavaMappingforInterfaces-skeleton

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Java

package Filesystem;

public class _NodeTie extends _NodeDisp implements Ice.TieBase {

 public _NodeTie() {}

 public
 _NodeTie(_NodeOperations delegate)
 {
 _ice_delegate = delegate;
 }

 public java.lang.Object
 ice_delegate()
 {
 return _ice_delegate;
 }

 public void
 ice_delegate(java.lang.Object delegate)
 {
 _ice_delegate = (_NodeOperations)delegate;
 }

 public boolean
 equals(java.lang.Object rhs)
 {
 if (this == rhs)
 {
 return true;
 }
 if (!(rhs instanceof _NodeTie))
 {
 return false;
 }

 return _ice_delegate.equals(((_NodeTie)rhs)._ice_delegate);
 }

 public int
 hashCode()
 {
 return _ice_delegate.hashCode();
 }

 public String
 name(Ice.Current current)
 {
 return _ice_delegate.name(current);
 }

 private _NodeOperations _ice_delegate;
}

This looks a lot worse than it is: in essence, the generated tie class is simply a servant class (it extends) that delegates to your _NodeDisp
implementation class each invocation of a method corresponding to a Slice operation:

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

A skeleton class, tie class, and implementation class.

The generated tie class also implements the interface, which defines methods for obtaining and changing the delegate object:Ice.TieBase

Java

package Ice;

public interface TieBase {
 java.lang.Object ice_delegate();
 void ice_delegate(java.lang.Object delegate);
}

The delegate has type in these methods in order to allow a tie object's delegate to be manipulated without knowing its actual java.lang.Object
type. However, the modifier raises if the given delegate object is not of the correct type.ice_delegate ClassCastException

Given this machinery, we can create an implementation class for our interface as follows:Node

Java

package Filesystem;

public final class NodeI implements _NodeOperations {

 public NodeI(String name)
 {
 _name = name;
 }

 public String name(Ice.Current current)
 {
 return _name;
 }

 private String _name;
}

Note that this class is identical to our previous implementation, except that it implements the interface and does not extend _NodeOperations _Nod
 (which means that you are now free to extend any other class to support your implementation).eDisp

To create a servant, you instantiate your implementation class and the tie class, passing a reference to the implementation instance to the tie
constructor:

Java

NodeI fred = new NodeI("Fred"); // Create implementation
_NodeTie servant = new _NodeTie(fred); // Create tie

Alternatively, you can also default-construct the tie class and later set its delegate instance by calling :ice_delegate

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

Java

_NodeTie servant = new _NodeTie(); // Create tie
// ...
NodeI fred = new NodeI("Fred"); // Create implementation
// ...
servant.ice_delegate(fred); // Set delegate

When using tie classes, it is important to remember that the tie instance is the servant, not your delegate. Furthermore, you must not use a tie
instance to an Ice object until the tie has a delegate. Once you have set the delegate, you must not change it for the lifetime of the tie; incarnate
otherwise, undefined behavior results.

You should use the tie approach only when necessary, that is, if you need to extend some base class in order to implement your servants: using the
tie approach is more costly in terms of memory because each Ice object is incarnated by two Java objects (the tie and the delegate) instead of just
one. In addition, call dispatch for ties is marginally slower than for ordinary servants because the tie forwards each operation to the delegate, that is,
each operation invocation requires two function calls instead of one.

Also note that, unless you arrange for it, there is no way to get from the delegate back to the tie. If you need to navigate back to the tie from the
delegate, you can store a reference to the tie in a member of the delegate. (The reference can, for example, be initialized by the constructor of the
delegate.)

See Also

Server-Side Java Mapping for Interfaces
Parameter Passing in Java
Raising Exceptions in Java
Object Incarnation in Java

https://doc.zeroc.com/display/Ice34/Object+Incarnation+in+Java
https://doc.zeroc.com/display/Ice34/Server-Side+Java+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice34/Parameter+Passing+in+Java
https://doc.zeroc.com/display/Ice34/Raising+Exceptions+in+Java
https://doc.zeroc.com/display/Ice34/Object+Incarnation+in+Java

	Tie Classes in Java

