Ice 3.5.1 Documentation

Resource Allocation using lceGrid Sessions

IceGrid provides a resource allocation facility that coordinates access to the objects and servers of an IceGrid application. To allocate a resource for
exclusive use, a client must first establish a session by authenticating itself with the IceGrid registry or a Glacier2 router, after which the client may
reserve objects and servers that the application indicates are allocatable. The client should release the resource when it is no longer needed,
otherwise IceGrid reclaims it when the client's session terminates or expires due to inactivity.

An allocatable server offers at least one allocatable object. The server is considered to be allocated when its first allocatable object is claimed, and is
not released until all of its allocated objects are released. While the server is allocated by a client, no other clients can allocate its objects.

On this page:

Creating an IceGrid Session

Controlling Access to IceGrid Sessions

Allocating Objects with an IceGrid Session
Allocating Servers with an lceGrid Session

Security Considerations for Allocated Resources
Deploying Allocatable Resources

Using Resource Allocation in the Ripper Application

Creating an IceGrid Session

A client must create an IceGrid session before it can allocate objects. If you have configured a Glacier2 router to use IceGrid's session managers, the
client's router session satisfies this requirement.

In the absence of Glacier2, an IceGrid client invokes cr eat eSessi on or cr eat eSessi onFr onSecur eConnect i on on IceGrid's Regi stry
interface to create a session:

Slice

nodul e IceGid {
exception Perm ssionDeni edException {
string reason;

1

interface Registry {
Sessi on* createSession(string userld, string password)
throws Perni ssi onDeni edExcepti on;

Sessi on* creat eSessi onFronSecur eConnecti on()
throws Perni ssi onDeni edExcepti on;

i denpotent int get SessionTi meout ();
}
I

The cr eat eSessi on operation expects a username and password and returns a session proxy if the client is allowed to create a session. By
default, IceGrid does not allow the creation of sessions. You must define the registry property | ceGri d. Regi stry. Per m ssi onsVeri fi er with
the proxy of a permissions verifier object to enable session creation with cr eat eSessi on.

The cr eat eSessi onFr onSecur eConnect i on operation does not require a username and password because it uses the credentials supplied by
an SSL connection to authenticate the client. As with cr eat eSessi on, you must enable session creation by configuring the proxy of a permissions
verifier object so that clients can use cr eat eSessi onFr onSecur eConnect i on to create a session. In this case, the property is | ceGri d.

Regi stry. SSLPer m ssi onsVerifier.

To create a session, the client obtains the registry proxy by converting the well-known proxy string " | ceGri d/ Regi stry" to a proxy object with the

communicator, downcasts the proxy to the | ceGri d: : Regi st ry interface, and invokes on one of the operations. The sample code below
demonstrates how to do it in C++; the code will look very similar in other language mappings.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Glacier2+Integration+with+IceGrid
https://doc.zeroc.com/display/Ice35/Getting+Started+with+Glacier2#GettingStartedwithGlacier2-CreatingaGlacier2Session
https://doc.zeroc.com/display/Ice35/IceSSL

Ice 3.5.1 Documentation

C++

Ice::Object Prx base = communi cator->stringToProxy("lceGid/ Registry");
lceGrid::RegistryPrx registry = IceGid:: RegistryPrx::checkedCast (base);
string username = ...;
string password = ...;
lce@id:: SessionPrx session;
try {
session = regi stry->createSessi on(usernane, password);
} catch (const IceGid::Perm ssionDeni edExcepti on & ex) {
cout << "perm ssion denied:\n" << ex.reason << endl;

}

@ The identity of the registry object may change based on its configuration settings.

After creating the session, the client must keep it alive by periodically invoking its keepAl i ve operation. The session expires if the client does not
invoke keepAl i ve within the configured timeout period, which can be obtained by calling the get Sessi onTi meout operation on the Regi stry
interface.

If a session times out, or if the client explicitly terminates the session by invoking its dest r oy operation, IceGrid automatically releases all objects
allocated using that session.

Controlling Access to IceGrid Sessions

As described above, you must configure the IceGrid registry with the proxy of at least one permissions verifier object to enable session creation:
® |ceGid. Registry.PernissionsVerifier
This property supplies the proxy of an object that implements the interface G aci er 2: : Per mi ssi onsVer i fi er . Defining this property
allows clients to create sessions using cr eat eSessi on.
® |ceGid. Registry. SSLPerm ssionsVerifier
This property supplies the proxy of an object that implements the interface G aci er 2: : SSLPer m ssi onsVeri fi er. Defining this
property allows clients to create sessions using cr eat eSessi onFr onmSecur eConnect i on.
IceGrid supplies built-in permissions verifier objects:

® A null permissions verifier for TCP/IP. This object accepts any username and password and should only be used in a secure environment
where no access control is necessary. You select this verifier object by defining the following configuration property:

lceGrid. Regi stry. Perm ssionsVerifier=<instance-nanme>/ Nul | Perm ssi onsVerifier

Note that you have to substitute the correct instance name for the object identity category.

® A null permissions verifier for SSL, analogous to the one for TCP/IP. You select this verifier object by defining the following configuration
property:

I ceGrid. Regi stry. SSLPer ni ssi onsVeri fi er=<i nst ance- nanme>/ Nul | SSLPer m ssi onsVerifier
* A file-based permissions verifier. This object uses an access control list in a file that contains username-password pairs. The format of the
password file is the same as the format of Glacier2 password files. You enable this verifier implementation by defining the configuration

property | ceGri d. Regi stry. Crypt Passwor ds with the pathname of the password file. Note that this property is ignored if you specify
the proxy of a permissions verifier object using | ceGri d. Regi stry. Permi ssi onsVerifier.

You can also implement your own permissions verifier object.

Allocating Objects with an IceGrid Session

A client allocates objects using the session proxy returned from cr eat eSessi on or cr eat eSessi onFr onSecur eConnect i on. The proxy
supports the Sessi on interface shown below:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/IceGrid+Properties#IceGridProperties-IceGrid.Registry.PermissionsVerifier
https://doc.zeroc.com/display/Ice35/IceGrid+Properties#IceGridProperties-IceGrid.Registry.SSLPermissionsVerifier
https://doc.zeroc.com/display/Ice35/Well-Known+Registry+Objects
https://doc.zeroc.com/display/Ice35/Getting+Started+with+Glacier2#GettingStartedwithGlacier2-WritingaPasswordFile
https://doc.zeroc.com/display/Ice35/IceGrid+Properties#IceGridProperties-IceGrid.Registry.CryptPasswords
https://doc.zeroc.com/display/Ice35/Securing+a+Glacier2+Router#SecuringaGlacier2Router-Glacier2AccessControl
https://doc.zeroc.com/display/Ice35/Well-Known+Registry+Objects

Ice 3.5.1 Documentation

Slice

modul e IceGid {
exception Obj ect Not Regi st eredException {
lce::ldentity id;
}

exception Allocati onException {
string reason;

}

exception AllocationTi meout Excepti on
extends Allocati onException {

}
interface Session extends d acier2:: Session {
i denpotent voi d keepAlive();

oj ect* allocateCbjectByld(lce::ldentity id)
t hrows Obj ect Not Regi st er edExcepti on,
Al | ocati onExcepti on;

Qoj ect* al |l ocat eCbj ect ByType(string type)
throws Allocati onException;

void rel easeCbject(lce::ldentity id)
throws Obj ect Not Regi st er edExcepti on,
Al | ocati onExcepti on;

i denpotent voi d setAll ocationTi neout (i nt tineout);
I
i

The client is responsible for keeping the session alive by periodically invoking keepAl i ve, as discussed earlier.

The al | ocat eQoj ect Byl d operation allocates and returns the proxy for the allocatable object with the given identity. If no allocatable object with
the given identity is registered, the client receives Qbj ect Not Regi st er edExcept i on. If the object cannot be allocated, the client receives Al | oca
ti onExcepti on. An allocation attempt can fail for the following reasons:

® the object is already allocated by the session
® the object is allocated by another session and did not become available during the configured allocation timeout period
® the session was destroyed.

The al | ocat eQbj ect By Type operation allocates and returns a proxy for an allocatable object registered with the given type. If more than one
allocatable object is registered with the given type, the registry selects one at random. The client receives Al | ocat i onExcept i on if no objects with
the given type could be allocated. An allocation attempt can fail for the following reasons:

® no objects are registered with the given type

¢ all objects with the given type are already allocated (either by this session or other sessions) and none became available during the
configured allocation timeout period

® the session was destroyed.

The r el easebj ect operation releases an object allocated by the session. The client receives Obj ect Not Regi st er edExcepti on if no
allocatable object is registered with the given identity and Al | ocat i onExcept i on if the object is not allocated by the session. Upon session
destruction, IceGrid automatically releases all allocated objects.

The set Al | ocat i onTi neout operation configures the timeout used by the allocation operations. If no allocatable objects are available when the

client invokes al | ocat eCbj ect Byl d or al | ocat eObj ect By Type, IceGrid waits for the specified timeout period for an allocatable object to
become available. If the timeout expires, the client receives Al | ocat i onTi meout Excepti on.

Allocating Servers with an lceGrid Session

A client does not need to explicitly allocate a server. If a server is allocatable, IceGrid implicitly allocates it to the first client that claims one of the
server's allocatable objects. Likewise, IceGrid releases the server when all of its allocatable objects are released.

Copyright © 2017, ZeroC, Inc.



Ice 3.5.1 Documentation

Server allocation is useful in two situations:

® Only allocatable servers can use the sessi on activation mode, in which the server is activated on demand when allocated by a client and

deactivated upon release.
® An allocatable server can be secured with IceSSL or Glacier2 so that its objects can only be invoked by the client that allocated it.

Security Considerations for Allocated Resources

IceGrid's resource allocation facility allows clients to coordinate access to objects and servers but does not place any restrictions on client invocations
to allocated objects; any client that has a proxy for an allocated object could conceivably invoke an operation on it. IceGrid assumes that clients are
cooperating with each other and respecting allocation semantics.

To prevent unauthorized clients from invoking operations on an allocated object or server, you can use IceSSL or Glacier2:

® Using IceSSL, you can secure access to a server or a particular object adapter with the properties | ceSSL. Tr ust Onl y. Ser ver or | ceSSL
. Trust Onl y. Server . Adapt er Nane. For example, if you configure a server with the session activation mode, you can set one of the | ce
SSL. Trust Onl y properties to the ${ sessi on. i d} variable, which is substituted with the session ID when the server is activated for the
session. If the IceGrid session was created from a secure connection, the session ID will be the distinguished name associated with the
secure connection, which effectively restricts access to the server or one of its adapters to the client that established the session with
IceGrid.

® With Glacier2, you can secure access to an allocated object or the object adapters of an allocated server with the Glacier2 filtering
mechanism. By default, IceGrid sessions created with a Glacier2 router are automatically given access to allocated objects, allocatable
objects, certain well-known objects, and the object adapters of allocated servers.

Deploying Allocatable Resources

Allocatable objects are registered using a descriptor that is similar to well-known object descriptors. Allocatable objects cannot be replicated and
therefore can only be specified within an object adapter descriptor.

Servers can be specified as allocatable by setting the server descriptor's al | ocat abl e attribute.

As an example, the following application defines an allocatable server and an allocatable object:

XML

<i cegrid>
<application nane="Ri pper">
<node nanme="Nodel">
<server id="Encoder Server"
exe="/opt/ripper/bin/server"
activation="on-demand"
al | ocat abl e="true">
<adapt er nane="Encoder Adapter" id="Encoder Adapter" endpoints="tcp">
<al | ocat abl e identity="Encoder Factory" type="::Ri pper:: MP3Encoder Factory"/>
</ adapt er >
</ server>
</ node>
</ appl i cation>
</icegrid>

Using Resource Allocation in the Ripper Application

We can use the allocation facility in our MP3 encoder factory to coordinate access to the MP3 encoder factories. First we need to modify the
descriptors to define an allocatable object:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/IceSSL
https://doc.zeroc.com/display/Ice35/Glacier2
https://doc.zeroc.com/display/Ice35/IceSSL+Properties#IceSSLProperties-IceSSL.TrustOnly.Server
https://doc.zeroc.com/display/Ice35/IceSSL+Properties#IceSSLProperties-IceSSL.TrustOnly.Server.AdapterName
https://doc.zeroc.com/display/Ice35/IceSSL+Properties#IceSSLProperties-IceSSL.TrustOnly.Server.AdapterName
https://doc.zeroc.com/display/Ice35/Securing+a+Glacier2+Router#SecuringaGlacier2Router-RequestFiltering
https://doc.zeroc.com/display/Ice35/Securing+a+Glacier2+Router#SecuringaGlacier2Router-RequestFiltering
https://doc.zeroc.com/display/Ice35/Glacier2+Integration+with+IceGrid
https://doc.zeroc.com/display/Ice35/Object+Descriptor+Element
https://doc.zeroc.com/display/Ice35/Allocatable+Descriptor+Element

Ice 3.5.1 Documentation

XML

<i cegrid>
<application nane="Ri pper">
<server-tenpl ate i d="Encoder Server Tenpl ate" >
<paraneter nanme="index"/>
<server id="Encoder Server ${i ndex}"
exe="/opt/ripper/bin/server"
activation="on-denand" >
<adapt er nanme="Encoder Adapter"” endpoi nts="tcp">
<al | ocat abl e identity="Encoder Factory${i ndex}"
type=":: Ri pper:: MP3Encoder Fact ory"/>
</ adapt er >
</ server>
</ server-tenpl at e>
<node nanme="Nodel">
<server-instance tenpl at e="Encoder Server Tenpl ate" index="1"/>
</ node>
<node nanme="Node2">
<server-instance tenpl at e="Encoder Server Tenpl ate" index="2"/>
</ node>
</ application>
</icegrid>

Next, the client needs to create a session and allocate a factory:

C++

I ce:: ObjectPrx obj = session->allocateCbjectByType(Ri pper:: MP3Encoder Factory::ice_staticld());
try {
Ri pper:: MP3Encoder Prx encoder = factory->createEncoder();
/'l Use the encoder to encode a file ...
}
catch (const |ce::Local Exception & ex) {
/1 There was a problemw th the encoding, we catch the
/] exception to nmake sure we release the factory.

}

sessi on->r el easeCbj ect (obj ->i ce_getldentity());

It is important to release an allocated object when it is no longer needed so that other clients may use it. If you forget to release an object, it remains
allocated until the session is destroyed.

See Also

Getting Started with Glacier2
lceSSL

Well-Known Registry Objects
Securing a Glacier2 Router
Object Descriptor Element
Allocatable Descriptor Element
IceGrid Properties

IceSSL Properties

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Getting+Started+with+Glacier2
https://doc.zeroc.com/display/Ice35/IceSSL
https://doc.zeroc.com/display/Ice35/Well-Known+Registry+Objects
https://doc.zeroc.com/display/Ice35/Securing+a+Glacier2+Router
https://doc.zeroc.com/display/Ice35/Object+Descriptor+Element
https://doc.zeroc.com/display/Ice35/Allocatable+Descriptor+Element
https://doc.zeroc.com/display/Ice35/IceGrid+Properties
https://doc.zeroc.com/display/Ice35/IceSSL+Properties

	Resource Allocation using IceGrid Sessions

