Ice 3.5.1 Documentation

Slice Metadata Directives

On this page:

General Metadata Directives

Metadata Directives for C++

Metadata Directives for Java

Metadata Directives for C#

Metadata Directives for .NET and Mono
Metadata Directives for Objective-C
Metadata Directives for Python
Metadata Directives for Freeze

General Metadata Directives

am

This directive applies to interfaces, classes, and individual operations. It enable code generation for asynchronous method invocation.

@ This directive applies to the deprecated AMI mapping. For the new AMI mapping there is no need for this directive.

anmd

This directive applies to interfaces, classes, and individual operations. It enables code generation for asynchronous method dispatch. (See the
relevant language mapping chapter for details.)

deprecat ed

This directive allows you to emit a deprecation warning for Slice constructs.

f or mat
This directive defines the encoding format used for any classes or exceptions marshaled as the arguments or results of an operation. The tag can be
applied to an interface, which affects all of its operations, or to individual operations. Legal values for the tag are f or mat : sl i ced, f or mat :

conpact, and f or mat : def aul t . A tag specified for an operation overrides any setting applied to its enclosing interface. The | ce. Def aul t .
Sl i cedFor mat property defines the behavior when no tag is present.

preserve-slice

This directive applies to classes and exceptions, allowing an intermediary to forward an instance of the annotated type, or any of its subtypes, with all
of its slices intact. Operations that transfer such types must be annotated with f or mat : sl i ced. It is not necessary to repeat the pr eserve-slice
tag on derived types, but you may wish to do so for documentation purposes.

pr ot ect ed

This directive applies to data members of classes and changes code generation to make these members protected. See class mapping of the
relevant language mapping chapter for more information.

User Excepti on

This directive applies only to operations on local interfaces. The metadata directive indicates that the operation can throw any user exception,
regardless of its specific definition. (This directive is used for the | ocat e and f i ni shed operations on servant locators, which can throw any user
exception.)

Metadata Directives for C++

cpp: array and cpp: r ange

These directives apply to sequences. They direct the code generator to create zerocopy APIs for passing sequences as parameters.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Deprecating+Slice+Definitions
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions
https://doc.zeroc.com/display/Ice35/Ice+Default+and+Override+Properties#IceDefaultandOverrideProperties-Ice.Default.SlicedFormat
https://doc.zeroc.com/display/Ice35/Ice+Default+and+Override+Properties#IceDefaultandOverrideProperties-Ice.Default.SlicedFormat
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions#UnderstandingObjectsandExceptions-preserve
https://doc.zeroc.com/pages/viewpage.action?pageId=14680630#C++MappingforSequences-CustomSequenceMappinginC++
https://doc.zeroc.com/display/Ice35/Deprecated+AMI+Mapping

Ice 3.5.1 Documentation

cpp: cl ass

This directive applies to structures. It directs the code generator to create a C++ class (instead of a C++ structure) to represent a Slice structure.

cpp: conpar abl e

This directive applies to structures. It directs the code generator to generate comparison operators for a structure regardless of whether it qualifies as
a legal dictionary key type.

cpp: const

This directive applies to operations. It directs the code generator to create a const pure virtual member function for the skeleton class.

cpp: header - ext

This global directive allows you to use a file extension for C++ header files other than the default . h extension.

cpp:ice_print

This directive applies to exceptions. It directs the code generator to declare (but not implement) an i ce_pri nt member function that overrides the i ¢
e_print virtual functionin | ce: : Except i on. The application must provide the implementation of this i ce_pri nt function.

cpp: i nclude

This global directive allows you inject additional #include directives into the generated code. This is useful for custom types.

cpp: type: stringandcpp:type: wstring

These directives apply to data members of type string as well as to containers, such as structures, classes, exceptions, and modules. String
members map by default to st d: : st ri ng. You can use the cpp: t ype: wst ri ng metadata to cause a string data member (or all string data
members in a structure, class or exception) to map to st d: : wst ri ng instead. Use the cpp: t ype: st ri ng metadata to force string members to use
the default mapping regardless of any enclosing metadata.

Slice

["cpp:type:wstring"]
module A { // Al string menbers in this nodule map by default to std::wstring
struct Structl {
string s; // Maps to std::wstring
I
struct Struct2 {
["cpp:type:string"] string s; // Maps to std::string
s

["cpp:type:string"] // Al string nenbers in this module nmap by default to std::string
nodul e I nner {
struct Struct4d {
string s; // Maps to std::string
}

["cpp:type:wstring"] // Al string nenbers of Struct4 map by default to std::wstring
struct Struct3 {

string s; // Maps to std::wstring
b

cpp: virtual

This directive applies to classes. If the directive is present and a class has base classes, the generated C++ class derives virtually from its bases;
without this directive, slice2cpp generates the class so it derives non-virtually from its bases.

This directive is useful if you use Slice classes as servants and want to inherit the implementation of operations in the base class in the derived class.
For example:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/pages/viewpage.action?pageId=14680633
https://doc.zeroc.com/pages/viewpage.action?pageId=14680633
https://doc.zeroc.com/pages/viewpage.action?pageId=14680652#ServerSideC++MappingforInterfaces-SkeletonClassesinC++
https://doc.zeroc.com/display/Ice35/slice2cpp+Command-Line+Options
https://doc.zeroc.com/pages/viewpage.action?pageId=14680629
https://doc.zeroc.com/pages/viewpage.action?pageId=14680642
https://doc.zeroc.com/pages/viewpage.action?pageId=14680630#C++MappingforSequences-CustomSequenceMappinginC++
https://doc.zeroc.com/pages/viewpage.action?pageId=14680626#C++MappingforBuiltInTypes-wstring

Ice 3.5.1 Documentation

Slice

cl ass Base {
int baseOp();

}

["cpp:virtual "]

class Derived extends Base {
string derivedOp();

b

The metadata directive causes slice2cpp to generate the class definition for Der i ved using virtual inheritance:

C++

class Base : virtual public Ice::oject {
11

3

class Derived : virtual public Base {
/1
I

This allows you to reuse the implementation of baseOp in the servant for Der i ved using ladder inheritance:

C++
class Basel : public virtual Base {
Ice::Int baseOp(const Ice::Currenté&);
Il
b
class Derivedl : public virtual Derived, public virtual Basel {

/1 Re-use inherited baseOp()
I

Note that, if you have data member in classes and use virtual inheritance, you need to take care to correctly call base class constructors if you
implement your own one-shot constructor. For example:

Slice

cl ass Base {
int baselnt;

}

class Derived extends Base {
int derivedlnt;

}s

The generated one-shot constructor for Der i ved initializes both basel nt and deri vedI nt :

Copyright © 2017, ZeroC, Inc.



Ice 3.5.1 Documentation

C++

Derived::Derived(lce::Int __ice_baselnt, Ice::Int __ice_derivedlnt)
M : Base(__ice_baselnt),
derivedint(__ice_derivedlnt)

{

}

If you derive your own class from Der i ved and add a one-shot constructor to your class, you must explicitly call the constructor of all the base
classes, including Base. Failure to call the Base constructor will result in Base being default-constructed instead of getting a defined value. For
example:

C++
class Derivedl : public virtual Derived {
public:
Derivedl (int baselnt, int derivedlnt, const string& s)
Base(basel nt), Derived(baselnt, derivedlint), _s(s)
{
}
private:
string _s;
b

This code correctly initializes the basel nt member of the Base part of the class. Note that the following does not work as intended and leaves the Ba
se part default-constructed (meaning that basel nt is not initialized):

C++
class Derivedl : public virtual Derived {
public:
Derivedl (int baselnt, int derivedlnt, const string& s)
Derived(baselnt, derivedint), _s(s)
{
/1 WRONG. Base::baselnt is not initialized.
}
private:
string _s;
I

Metadata Directives for Java

j ava: package
This global directive instructs the code generator to place the generated classes into a specific package.

j ava: get set

This directive applies to data members and structures, classes, and exceptions. It adds accessor and modifier methods (JavaBean methods) for data
members.

j ava: opti onal

This directive forces optional output parameters to use the optional mapping instead of the default required mapping in servants.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-JavaPackages
https://doc.zeroc.com/display/Ice35/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-JavaBeanMapping
https://doc.zeroc.com/display/Ice35/Parameter+Passing+in+Java

Ice 3.5.1 Documentation

java: serializable

This directive allows you to use Ice to transmit serializable Java classes as native objects, without having to define corresponding Slice definitions for
these classes.

j ava: seri al Versi onUl D
This directive overrides the default (generated) value of seri al Ver si onUl Dfor a Slice type.
j ava: type

This directive allows you to use custom types for sequences and dictionaries.

Metadata Directives for C#

Note that C# (and other Common Language Runtime languages) are also affected by metadata with a cl r : prefix. (See #Metadata Directives for .
NET and Mono.)

cs:attribute

This directive can be used both as a global directive and as directive for specific Slice constructs. It injects C# attribute definitions into the generated
code. (See C-Sharp Specific Metadata Directives.)

Metadata Directives for .NET and Mono

clr:class

This directive applies to Slice structures. It directs the code generator to emit a C# class instead of a structure.

clr:collection

This directive applies to sequences and dictionaries and maps them to types that are derived from Col | ect i onBase and Di cti onar yBase,
respectively.

clr:generic:List,clr:generic:LinkedList,clr:generic: Qeueandclr:generic: Stack

These directives apply to sequences and map them to the specified sequence type.

clr:generic: SortedDictionary

This directive applies to dictionaries and maps them to Sor t edDi cti onary.

clr:generic

This directive applies to sequences and allows you map them to custom types.

clr:property

This directive applies to Slice structures and classes. It directs the code generator to create C# property definitions for data members.

clr:serializable

This directive allows you to use Ice to transmit serializable CLR classes as native objects, without having to define corresponding Slice definitions for
these classes.

Metadata Directives for Objective-C

obj c: prefix

This directive applies to modules and changes the default mapping for modules to use a specified prefix.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Serializable+Objects+in+Java
https://doc.zeroc.com/display/Ice35/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-OverridingserialVersionUID
https://doc.zeroc.com/display/Ice35/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-CustomTypesinJava
https://doc.zeroc.com/display/Ice35/C-Sharp+Specific+Metadata+Directives
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-ClassMappingforStructuresinC#
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-PropertyMappingforStructuresinC#
https://doc.zeroc.com/display/Ice35/Serializable+Objects+in+C-Sharp
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Modules

Ice 3.5.1 Documentation

Metadata Directives for Python

pyt hon: package

This global directive instructs the code generator to place the generated code into a specified Python package.

pyt hon: seq: def aul t, pyt hon: seq: | i st and pyt hon: seq: tupl e

These directives allow you to change the mapping for Slice sequences.

Metadata Directives for Freeze

freeze:read and freeze:wite

These directives inform a Freeze evictor whether an operation updates the state of an object, so the evictor knows whether it must save an object

before evicting it.

See Also

® Metadata

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Code+Generation+in+Python#CodeGenerationinPython-GeneratingPackagesinPython
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Sequences#PythonMappingforSequences-CustomizingtheSequenceMappinginPython
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts#FreezeEvictorConcepts-DetectingUpdatestoPersistentState
https://doc.zeroc.com/display/Ice35/Metadata

	Slice Metadata Directives

