Ice 3.4.2 Documentation

Passing Interfaces by Value

Consider the following definitions:

Slice

interface Tine {
i denpotent Ti meOf Day get Ti me();
/1

b

interface Record {
voi d addTi meStanp(Tinme t); // Note: Tine t, not Tine* t
/1

h

Note that addTi meSt anp accepts a parameter of type Ti ne, not of type Ti me*. The question is, what does it mean to pass an interface by value?
Obviously, at run time, we cannot pass an an actual interface to this operation because interfaces are abstract and cannot be instantiated. Neither
can we pass a proxy to a Ti me object to addTi meSt anp because a proxy cannot be passed where an interface is expected.

However, what we can pass to addTi meSt anp is something that is not abstract and derives from the Ti me interface. For example, at run time, we
could pass an instance of the Ti neCf Day class we saw earlier. Because the Ti neCOf Day class derives from the Ti ne interface, the class type is
compatible with the formal parameter type Ti nme and, at run time, what is sent over the wire to the server is the Ti meOf Day class instance.

See Also

® Pass-by-Value Versus Pass-by-Reference

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Pass-by-Value+Versus+Pass-by-Reference
https://doc.zeroc.com/display/Ice34/Pass-by-Value+Versus+Pass-by-Reference

	Passing Interfaces by Value

