
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Code Generation in Python
The Python mapping supports two forms of code generation: dynamic and static.

On this page:

Dynamic Code Generation in Python
Ice.loadSlice Options in Python
Locating Slice Files in Python
Loading Multiple Slice Files in Python

Static Code Generation in Python
Compiler Output in Python
Include Files in Python

Static Versus Dynamic Code Generation in Python
Application Considerations for Code Generation in Python
Mixing Static and Dynamic Code Generation in Python

slice2py Command-Line Options
Generating Packages in Python

Dynamic Code Generation in Python
Using dynamic code generation, Slice files are "loaded" at run time and dynamically translated into Python code, which is immediately compiled and
available for use by the application. This is accomplished using the function, as shown in the following example:Ice.loadSlice

Python

Ice.loadSlice("Color.ice")
import M

print "My favorite color is", M.Color.blue

For this example, we assume that contains the following definitions:Color.ice

Slice

module M {
 enum Color { red, green, blue };
};

The code imports module after the Slice file is loaded because module is not defined until the Slice definitions have been translated into Python.M M

Ice.loadSlice Options in Python

The function behaves like a Slice compiler in that it accepts command-line arguments for specifying preprocessor options and Ice.loadSlice
controlling code generation. The arguments must include at least one Slice file.

The function has the following Python definition:

Python

def Ice.loadSlice(cmd, args=[])

The command-line arguments can be specified entirely in the first argument, , which must be a string. The optional second argument can be used cmd
to pass additional command-line arguments as a list; this is useful when the caller already has the arguments in list form. The function always returns

.None

For example, the following calls to are functionally equivalent:Ice.loadSlice

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Python

Ice.loadSlice("-I/opt/IcePy/slice Color.ice")
Ice.loadSlice("-I/opt/IcePy/slice", ["Color.ice"])
Ice.loadSlice("", ["-I/opt/IcePy/slice", "Color.ice"])

In addition to the , also supports the following command-line options:standard compiler options Ice.loadSlice

--all
Generate code for all Slice definitions, including those from included files.

--checksum
Generate for Slice definitions.checksums

Locating Slice Files in Python

If your Slice files depend on Ice types, you can avoid hard-coding the path name of your Ice installation directory by calling the Ice.getSliceDir
function:

Python

Ice.loadSlice("-I" + Ice.getSliceDir() + " Color.ice")

This function attempts to locate the subdirectory of your Ice installation using an algorithm that succeeds for the following scenarios:slice

Installation of a binary Ice archive
Installation of an Ice source distribution using make install
Installation via a Windows installer
RPM installation on Linux
Execution inside a compiled Ice source distribution

If the subdirectory can be found, returns its absolute path name, otherwise the function returns .slice getSliceDir None

Loading Multiple Slice Files in Python

You can specify as many Slice files as necessary in a single invocation of , as shown below:Ice.loadSlice

Python

Ice.loadSlice("Syscall.ice Process.ice")

Alternatively, you can call several times:Ice.loadSlice

Python

Ice.loadSlice("Syscall.ice")
Ice.loadSlice("Process.ice")

If a Slice file includes another file, the default behavior of generates Python code only for the named file. For example, suppose Ice.loadSlice Sys
 includes as follows:call.ice Process.ice

Slice

// Syscall.ice
#include <Process.ice>
...

https://doc.zeroc.com/display/Ice34/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice34/Using+Slice+Checksums+in+Python

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

If you call , Python code is not generated for the Slice definitions in or for any definitions Ice.loadSlice("-I. Syscall.ice") Process.ice
that may be included by . If you also need code to be generated for included files, one solution is to load them individually in Process.ice
subsequent calls to . However, it is much simpler, not to mention more efficient, to use the option instead:Ice.loadSlice --all

Python

Ice.loadSlice("--all -I. Syscall.ice")

When you specify , generates Python code for all Slice definitions included directly or indirectly from the named Slice files.--all Ice.loadSlice

There is no harm in loading a Slice file multiple times, aside from the additional overhead associated with code generation. For example, this situation
could arise when you need to load multiple top-level Slice files that happen to include a common subset of nested files. Suppose that we need to load
both and , both of which include . The simplest way to load both files is with a single call to Syscall.ice Kernel.ice Process.ice Ice.

:loadSlice

Python

Ice.loadSlice("--all -I. Syscall.ice Kernel.ice")

Although this invocation causes the Ice extension to generate code twice for , the generated code is structured so that the interpreter Process.ice
ignores duplicate definitions. We could have avoided generating unnecessary code with the following sequence of steps:

Python

Ice.loadSlice("--all -I. Syscall.ice")
Ice.loadSlice("-I. Kernel.ice")

In more complex cases, however, it can be difficult or impossible to completely avoid this situation, and the overhead of code generation is usually
not significant enough to justify such an effort.

Static Code Generation in Python
You should be familiar with static code generation if you have used other Slice language mappings, such as C++ or Java. Using static code
generation, the Slice compiler generates Python code from your Slice definitions.slice2py

Compiler Output in Python

For each Slice file , generates Python code into a file named in the output directory.X.ice slice2py X_ice.py

The default output directory is the current working directory, but a different directory can be specified using the option.--output-dir

In addition to the generated file, creates a Python package for each Slice module it encounters. A Python package is nothing more than a slice2py
subdirectory that contains a file with a special name (). This file is executed automatically by Python when a program first imports the __init__.py
package. It is created by and must not be edited manually. Inside the file is Python code to import the generated files that contain slice2py
definitions in the Slice module of interest.

For example, the Slice files and both define types in the Slice module . First we present :Process.ice Syscall.ice OS Process.ice

Using the file name would create problems if defined a module named , therefore the suffix is appended to the name X.py X.ice X _ice
of the generated file.

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

Slice

module OS {
 interface Process {
 void kill();
 };
};

And here is :Syscall.ice

Slice

#include <Process.ice>
module OS {
 interface Syscall {
 Process getProcess(int pid);
 };
};

Next, we translate these files using the Slice compiler:

> slice2py -I. Process.ice Syscall.ice

If we list the contents of the output directory, we see the following entries:

Python

OS/
Process_ice.py
Syscall_ice.py

The subdirectory is the Python package that created for the Slice module . Inside this directory is the special file that OS slice2py OS __init__.py
contains the following statements:

Python

import Process_ice
import Syscall_ice

Now when a Python program executes , the two files and are implicitly imported.import OS Process_ice.py Syscall_ice.py

Subsequent invocations of for Slice files that also contain definitions in the module result in additional statements being added slice2py OS import
to . Be aware, however, that statements may persist in files after a Slice file is renamed or becomes OS/__init__.py import __init__.py
obsolete. This situation may manifest itself as a run-time error if the interpreter can no longer locate the generated file while attempting to import the
package. It may also cause more subtle problems, if an obsolete generated file is still present and being loaded unintentionally. In general, it is
advisable to remove the package directory and regenerate it whenever the set of Slice files changes.

A Python program may also import a generated file explicitly, using a statement such as . Typically, however, it is more import Process_ice
convenient to import the Python module once, rather than importing potentially several individual files that comprise the module, especially when you
consider that the program must still import the module explicitly in order to make its definitions available. For example, it is much simpler to state

Python

import OS

rather than the following alternative:

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

1.
2.

3.

Python

import Process_ice
import Syscall_ice
import OS

Include Files in Python

It is important to understand how handles include files. In the absence of the option, the compiler does not generate Python code slice2py --all
for Slice definitions in included files. Rather, the compiler translates Slice statements into Python statements in the following #include import
manner:

Determine the full pathname of the include file.
Create the shortest possible relative pathname for the include file by iterating over each of the include directories (specified using the -I
option) and removing the leading directory from the include file if possible.
For example, if the full pathname of an include file is , and we specified the options /opt/App/slice/OS/Process.ice -I/opt/App
and , then the shortest relative pathname is after removing .-I/opt/App/slice OS/Process.ice /opt/App/slice
Replace any slashes with underscores, remove the extension, and append . Continuing our example from the previous step, the .ice _ice
translated import statement becomes
import OS_Process_ice

There is a potential problem here that must be addressed. The generated statement shown above expects to find the file import OS_Process_ice
 somewhere in Python's search path. However, uses a different default name, , when it compiles . .py slice2py Process_ice.py Process.ice.

To resolve this issue, we must use the option when compiling :--prefix Process.ice

> slice2py --prefix OS_ Process.ice

The option causes the compiler to prepend the specified prefix to the name of each generated file. When executed, the above command --prefix
creates the desired file name: OS_Process_ice.py.

It should be apparent by now that generating Python code for a complex Ice application requires a bit of planning. In particular, it is imperative that
you be consistent in your use of statements, include directories, and options to ensure that the correct file names are used at #include --prefix
all times.

Of course, these precautionary steps are only necessary when you are compiling Slice files individually. An alternative is to use the option and --all
generate Python code for all of your Slice definitions into one Python source file. If you do not have a suitable Slice file that includes all necessary
Slice definitions, you could write a "master" Slice file specifically for this purpose.

Static Versus Dynamic Code Generation in Python
There are several issues to consider when evaluating your requirements for code generation.

Application Considerations for Code Generation in Python

The requirements of your application generally dictate whether you should use dynamic or static code generation. Dynamic code generation is
convenient for a number of reasons:

it avoids the intermediate compilation step required by static code generation
it makes the application more compact because the application requires only the Slice files, not the assortment of files and directories
produced by static code generation
it reduces complexity, which is especially helpful during testing, or when writing short or transient programs.

Static code generation, on the other hand, is appropriate in many situations:

when an application uses a large number of Slice definitions and the startup delay must be minimized
when it is not feasible to deploy Slice files with the application
when a number of applications share the same Slice files
when Python code is required in order to utilize third-party Python tools.

Mixing Static and Dynamic Code Generation in Python

Using a combination of static and dynamic translation in an application can produce unexpected results. For example, consider a situation where a
dynamically-translated Slice file includes another Slice file that was statically translated:

Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

Slice

// Slice
#include <Glacier2/Session.ice>

module App {
 interface SessionFactory {
 Glacier2::Session* createSession();
 };
};

The Slice file is statically translated, as are all of the Slice files included with the Ice run time.Session.ice

Assuming the above definitions are saved in , let's execute a simple Python script:App.ice

Python

Python
import Ice
Ice.loadSlice("-I/opt/Ice/slice App.ice")

import Glacier2
class MyVerifier(Glacier2.PermissionsVerifier): # Error
 def checkPermissions(self, userId, password):
 return (True, "")

The code looks reasonable, but running it produces the following error:

'module' object has no attribute 'PermissionsVerifier'

Normally, importing the Glacier2 module as we have done here would load all of the Python code generated for the Glacier2 Slice files. However,
since has already included a subset of the Glacier2 definitions, the Python interpreter ignores any subsequent requests to import the entire App.ice
module, and therefore the type is not present.PermissionsVerifier

One way to address this problem is to import the statically-translated modules first, prior to loading Slice files dynamically:

Python

Python
import Ice, Glacier2 # Import Glacier2 before App.ice is loaded
Ice.loadSlice("-I/opt/Ice/slice App.ice")

class MyVerifier(Glacier2.PermissionsVerifier): # OK
 def checkPermissions(self, userId, password):
 return (True, "")

The disadvantage of this approach in a non-trivial application is that it breaks encapsulation, forcing one Python module to know what other modules
are doing. For example, suppose we place our implementation in a module named :PermissionsVerifier verifier.py

Python

Python
import Glacier2
class MyVerifier(Glacier2.PermissionsVerifier):
 def checkPermissions(self, userId, password):
 return (True, "")

Now that the use of Glacier2 definitions is encapsulated in , we would like to remove references to Glacier2 from the main script:verifier.py

Ice 3.4.2 Documentation

7 Copyright © 2017, ZeroC, Inc.

Python

Python
import Ice
Ice.loadSlice("-I/opt/Ice/slice App.ice")
...
import verifier # Error
v = verifier.MyVerifier()

Unfortunately, executing this script produces the same error as before. To fix it, we have to break the module's encapsulation and import verifier
the module in the main script because we know that the module requires it:Glacier2 verifier

Python

Python
import Ice, Glacier2
Ice.loadSlice("-I/opt/Ice/slice App.ice")
...
import verifier # OK
v = verifier.MyVerifier()

Although breaking encapsulation in this way might offend our sense of good design, it is a relatively minor issue.

Another solution is to import the necessary submodules explicitly. We can safely remove the Glacier2 reference from our main script after rewriting ve
 as shown below:rifier.py

Python

Python
import Glacier2_PermissionsVerifier_ice
import Glacier2
class MyVerifier(Glacier2.PermissionsVerifier):
 def checkPermissions(self, userId, password):
 return (True, "")

Using the rules defined for , we can derive the name of the module containing the code generated for static code generation PermissionsVerifier
 and import it directly. We need a second statement to make the Glacier2 definitions accessible in this module..ice import

slice2py Command-Line Options
The Slice-to-Python compiler, , offers the following command-line options in addition to the :slice2py standard options

--all
Generate code for all Slice definitions, including those from included files.

--checksum
Generate for Slice definitions.checksums

--prefix PREFIX
Use as the prefix for file names.PREFIX generated

Generating Packages in Python
By default, the scope of a Slice definition determines the of its mapped Python construct. There are times, however, when applications module
require greater control over the packaging of generated Python code. For example, consider the following Slice definitions:

https://doc.zeroc.com/display/Ice34/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice34/Using+Slice+Checksums+in+Python
https://doc.zeroc.com/display/Ice34/Python+Mapping+for+Modules

Ice 3.4.2 Documentation

8 Copyright © 2017, ZeroC, Inc.

Slice

module sys {
 interface Process {
 // ...
 };
};

Other language mappings can use these Slice definitions as shown, but they present a problem for the Python mapping: the top-level Slice module sys
conflicts with Python's predefined module sys. A Python application executing the statement would import whichever module the import sys
interpreter happens to locate first in its search path.

A workaround for this problem is to modify the Slice definitions so that the top-level module no longer conflicts with a predefined Python module, but
that may not be feasible in certain situations. For example, the application may already be deployed using other language mappings, in which case
the impact of modifying the Slice definitions could represent an unacceptable expense.

The Python mapping could have addressed this issue by considering the names of predefined modules to be reserved, in which case the Slice
module would be mapped to the Python module . However, the likelihood of a name conflict is relatively low to justify such a solution, sys _sys
therefore the mapping supports a different approach: global can be used to enclose generated code in a Python package. Our modified metadata
Slice definitions demonstrate this feature:

Slice

[["python:package:zeroc"]]
module sys {
 interface Process {
 // ...
 };
};

The global metadata directive causes the mapping to generate all of the code resulting from definitions in this Slice file python:package:zeroc
into the Python package . The net effect is the same as if we had enclosed our Slice definitions in the module : the Slice module is zeroc zeroc sys
mapped to the Python module . However, by using metadata we have not affected the semantics of the Slice definitions, nor have we zeroc.sys
affected other language mappings.

See Also

Using the Slice Compilers
Python Mapping for Modules
Using Slice Checksums in Python
Metadata

https://doc.zeroc.com/display/Ice34/Metadata
https://doc.zeroc.com/display/Ice34/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice34/Python+Mapping+for+Modules
https://doc.zeroc.com/display/Ice34/Using+Slice+Checksums+in+Python
https://doc.zeroc.com/display/Ice34/Metadata

	Code Generation in Python

