
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

The Slice Language
Here, we present the Slice language. Slice (Specification Language for Ice) is the fundamental abstraction mechanism for separating object 
interfaces from their implementations. Slice establishes a contract between client and server that describes the types and object interfaces used by 
an application. This description is independent of the implementation language, so it does not matter whether the client is written in the same 
language as the server.

Slice definitions are compiled for a particular implementation language by a compiler. The compiler translates the language-independent definitions 
into language-specific type definitions and APIs. These types and APIs are used by the developer to provide application functionality and to interact 
with Ice. The translation algorithms for various implementation languages are known as . Currently, Ice defines language language mappings
mappings for C++, Java, C#, Python, Objective-C, Ruby, and PHP.

Because Slice describes interfaces and types (but not implementations), it is a purely declarative language; there is no way to write executable 
statements in Slice.

Slice definitions focus on object interfaces, the operations supported by those interfaces, and exceptions that may be raised by operations. In 
addition, Slice offers features for . This requires quite a bit of supporting machinery; in particular, much of Slice is concerned with object persistence
the definition of data types. This is because data can be exchanged between client and server only if their types are defined in Slice. You cannot 
exchange arbitrary C++ data between client and server because it would destroy the language independence of Ice. However, you can always create 
a Slice type definition that corresponds to the C++ data you want to send, and then you can transmit the Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice is based on C++ and Java, we focus on those areas where Slice 
differs from C++ or Java or constrains the equivalent C++ or Java feature in some way. Slice features that are identical to C++ and Java are 
mentioned mostly by example.

Topics

Slice Compilation
Slice Source Files
Lexical Rules
Modules
Basic Types
User-Defined Types
Interfaces, Operations, and Exceptions
Classes
Forward Declarations
Type IDs
Operations on Object
Local Types
Names and Scoping
Metadata
Serializable Objects
Deprecating Slice Definitions
Using the Slice Compilers
Slice Checksums
Generating Slice Documentation
Slice Keywords
Slice Metadata Directives
Slice for a Simple File System

Even though Slice is an acronym, it is pronounced as a single syllable, like a slice of bread.

https://doc.zeroc.com/display/Ice34/Freeze
https://doc.zeroc.com/display/Ice34/Slice+Compilation
https://doc.zeroc.com/display/Ice34/Slice+Source+Files
https://doc.zeroc.com/display/Ice34/Lexical+Rules
https://doc.zeroc.com/display/Ice34/Modules
https://doc.zeroc.com/display/Ice34/Basic+Types
https://doc.zeroc.com/display/Ice34/User-Defined+Types
https://doc.zeroc.com/display/Ice34/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/Forward+Declarations
https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Operations+on+Object
https://doc.zeroc.com/display/Ice34/Local+Types
https://doc.zeroc.com/display/Ice34/Names+and+Scoping
https://doc.zeroc.com/display/Ice34/Metadata
https://doc.zeroc.com/display/Ice34/Serializable+Objects
https://doc.zeroc.com/display/Ice34/Deprecating+Slice+Definitions
https://doc.zeroc.com/display/Ice34/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice34/Slice+Checksums
https://doc.zeroc.com/display/Ice34/Generating+Slice+Documentation
https://doc.zeroc.com/display/Ice34/Slice+Keywords
https://doc.zeroc.com/display/Ice34/Slice+Metadata+Directives
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System

	The Slice Language

