
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Class Inheritance Semantics
Classes use the same pass-by-value semantics as . If you pass a class instance to an operation, the class and all its members are passed. structures
The usual type compatibility rules apply: you can pass a derived instance where a base instance is expected. If the receiver has static type
knowledge of the actual derived run-time type, it receives the derived instance; otherwise, if the receiver does not have static type knowledge of the
derived type, the instance is sliced to the base type. For an example, suppose we have the following definitions:

Slice

// In file Clock.ice:

class TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
};

interface Clock {
 TimeOfDay getTime();
 void setTime(TimeOfDay time);
};

// In file DateTime.ice:

#include <Clock.ice>

class DateTime extends TimeOfDay {
 short day; // 1 - 31
 short month; // 1 - 12
 short year; // 1753 onwards
};

Because is a sub-class of , the server can return a instance from , and the client can pass a DateTime TimeOfDay DateTime getTime DateTime
instance to . In this case, if both client and server are linked to include the code generated for both and , they setTime Clock.ice DateTime.ice
each receive the actual derived instance, that is, the actual run-time type of the instance is preserved.DateTime

Contrast this with the case where the server is linked to include the code generated for both and , but the client is linked Clock.ice DateTime.ice
only with the code generated for . In other words, the server understands the type and can return a instance from Clock.ice DateTime DateTime g

, but the client only understands . In this case, the derived instance returned by the server is sliced to its etTime TimeOfDay DateTime TimeOfDay
base type in the client. (The information in the derived part of the instance is simply lost to the client.)

Class hierarchies are useful if you need polymorphic (instead of polymorphic). For example:values interfaces

Slice

class Shape {
 // Definitions for shapes, such as size, center, etc.
};

class Circle extends Shape {
 // Definitions for circles, such as radius...
};

class Rectangle extends Shape {
 // Definitions for rectangles, such as width and length...
};

sequence<Shape> ShapeSeq;

interface ShapeProcessor {
 void processShapes(ShapeSeq ss);
};

https://doc.zeroc.com/display/Ice34/Structures

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Note the definition of and its use as a parameter to the operation: the class hierarchy allows us to pass a polymorphic ShapeSeq processShapes
sequence of shapes (instead of having to define a separate operation for each type of shape).

The receiver of a can iterate over the elements of the sequence and down-cast each element to its actual run-time type. (The receiver can ShapeSeq
also ask each element for its to determine its type.)type ID

See Also

Structures
Type IDs

https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Structures
https://doc.zeroc.com/display/Ice34/Type+IDs

	Class Inheritance Semantics

