
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Enumerations
A Slice enumerated type definition looks like the C++ version:

Slice

enum Fruit { Apple, Pear, Orange };

This definition introduces a type named that becomes a new type in its own right. Slice does not define how ordinal values are assigned to Fruit
enumerators. For example, you cannot assume that the enumerator will have the value 2 in different implementation languages. Slice Orange
guarantees only that the ordinal values of enumerators increase from left to right, so compares less than in all implementation Apple Pear
languages.

Unlike C++, Slice does not permit you to control the ordinal values of enumerators (because many implementation languages do not support such a
feature):

Slice

enum Fruit { Apple = 0, Pear = 7, Orange = 2 }; // Syntax error

In practice, you do not care about the values used for enumerators as long as you do not transmit the of an enumerator between ordinal value
address spaces. For example, sending the value 0 to a server to mean can cause problems because the server may not use 0 to represent Apple Ap

. Instead, simply send the value itself. If is represented by a different ordinal value in the receiving address space, that value will ple Apple Apple
be appropriately translated by the Ice run time.

As with C++, Slice enumerators enter the enclosing namespace, so the following is illegal:

Slice

enum Fruit { Apple, Pear, Orange };
enum ComputerBrands { Apple, IBM, Sun, HP }; // Apple redefined

Slice does not permit empty enumerations.

See Also

Structures
Sequences
Dictionaries
Constants and Literals

https://doc.zeroc.com/display/Ice34/Structures
https://doc.zeroc.com/display/Ice34/Sequences
https://doc.zeroc.com/display/Ice34/Dictionaries
https://doc.zeroc.com/display/Ice34/Constants+and+Literals

	Enumerations

