
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Forward Declarations
Both and can be forward declared. Forward declarations permit the creation of mutually dependent objects, for example:interfaces classes

Slice

module Family {
 interface Child; // Forward declaration

 sequence<Child*> Children; // OK

 interface Parent {
 Children getChildren(); // OK
 };

 interface Child { // Definition
 Parent* getMother();
 Parent* getFather();
 };
};

Without the forward declaration of , the definition obviously could not compile because and are mutually dependent interfaces. Child Child Parent
You can use forward-declared interfaces and classes to define types (such as the sequence in the previous example). Forward-declared Children
interfaces and classes are also legal as the type of a structure, exception, or class member, as the value type of a dictionary, and as the parameter
and return type of an operation. However, you cannot inherit from a forward-declared interface or class until after its definition has been seen by the
compiler:

Slice

interface Base; // Forward declaration

interface Derived1 extends Base {}; // Error!

interface Base {}; // Definition

interface Derived2 extends Base {}; // OK, definition was seen

Not inheriting from a forward-declared base interface or class until its definition is seen is necessary because, otherwise, the compiler could not
enforce that derived interfaces must not redefine operations that appear in base interfaces.

See Also

Interfaces, Operations, and Exceptions
Classes

A multi-pass compiler could be used, but the added complexity is not worth it.

https://doc.zeroc.com/display/Ice34/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice34/Classes

	Forward Declarations

