
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Well-Known Objects
On this page:

Overview of Well-Known Objects
Well-Known Object Types
Deploying Well-Known Objects
Adding Well-Known Objects Programmatically
Adding Well-Known Objects with icegridadmin
Querying Well-Known Objects
Using Well-Known Objects in the Ripper Application

Adding Well-Known Objects to the Ripper Deployment
Querying Ripper Objects with findAllObjectsByType
Querying Ripper Objects with findObjectByType
Querying Ripper Objects with findObjectByTypeOnLeastLoadedNode
Ripper Progress Review

Overview of Well-Known Objects
There are two types of : one specifies an identity and an object adapter identifier, while the other contains only an identity. The latter indirect proxies
type of indirect proxy is known as a . A well-known proxy refers to a well-known object, that is, its identity alone is sufficient to allow well-known proxy
the client to locate it. Ice requires all object identities in an application to be unique, but typically only a select few objects are able to be located only
by their identities.

In earlier sections we showed the relationship between indirect proxies containing an object adapter identifier and the IceGrid configuration. Briefly, in
order for a client to use a proxy such as , an object adapter must be given the identifier .factory@EncoderAdapter EncoderAdapter

A similar requirement exists for well-known objects. The registry maintains a table of these objects, which can be populated in a number of ways:

statically in descriptors,
programmatically using IceGrid's administrative interface,
dynamically using an IceGrid administration tool.

The registry's database maps an object identity to a proxy. A locate request containing only an identity prompts the registry to consult this database.
If a match is found, the registry examines the associated proxy to determine if additional work is necessary. For example, consider the well-known
objects in the following table.

Identity Proxy

Object1 Object1:tcp -p 10001

Object2 Object2@TheAdapter

Object3 Object3

The proxy associated with already contains endpoints, so the registry can simply return this proxy to the client.Object1

For , the registry notices the adapter ID and checks to see whether it knows about an adapter identified as . If it does, it Object2 TheAdapter
attempts to obtain the endpoints of that adapter, which may cause its server to be started. If the registry is successfully able to determine the
adapter's endpoints, it returns a direct proxy containing those endpoints to the client. If the registry does not recognize or cannot obtain TheAdapter
its endpoints, it returns the indirect proxy to the client. Upon receipt of another indirect proxy, the Ice run time in the client Object2@TheAdapter
will try once more to resolve the proxy, but generally this will not succeed and the Ice run time in the client will raise a as a NoEndpointException
result.

Finally, represents a hopeless situation: how can the registry resolve when its associated proxy refers to itself? In this case, the Object3 Object3
registry returns the proxy to the client, which causes the client to raise . Clearly, you should avoid this situation.Object3 NoEndpointException

Well-Known Object Types
The registry's database not only associates an identity with a proxy, but also a type. Technically, the "type" is an arbitrary string but, by convention,
that string represents the most-derived Slice type of the object. For example, the Slice of the encoder factory in our ripper application is type ID ::

.Ripper::MP3EncoderFactory

Object types are useful when performing .queries

Deploying Well-Known Objects

https://doc.zeroc.com/display/Ice34/Terminology#Terminology-IndirectProxies
https://doc.zeroc.com/display/Ice34/Type+IDs

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

The adds a well-known object to the registry. It must appear within the context of an adapter descriptor, as shown in the XML object descriptor
example below:

XML

<icegrid>
 <application name="Ripper">
 <node name="Node1">
 <server id="EncoderServer" exe="/opt/ripper/bin/server" activation="on-demand">
 <adapter name="EncoderAdapter" id="EncoderAdapter" endpoints="tcp">
 <object identity="EncoderFactory" type="::Ripper::MP3EncoderFactory"/>
 </adapter>
 </server>
 </node>
 </application>
</icegrid>

During deployment, the registry associates the identity with the indirect proxy . If the EncoderFactory EncoderFactory@EncoderAdapter
adapter descriptor had omitted the adapter ID, the registry would have generated a unique identifier by combining the server ID and the adapter
name.

In this example, the object's is specified explicitly.type

Adding Well-Known Objects Programmatically
The interface defines several operations that manipulate the registry's database of well-known objects:IceGrid::Admin

Slice

module IceGrid {
interface Admin {
 ...
 void addObject(Object* obj)
 throws ObjectExistsException,
 DeploymentException;
 void updateObject(Object* obj)
 throws ObjectNotRegisteredException,
 DeploymentException;
 void addObjectWithType(Object* obj, string type)
 throws ObjectExistsException,
 DeploymentException;
 void removeObject(Ice::Identity id)
 throws ObjectNotRegisteredException,
 DeploymentException;
 ...
};
};

addObject
The operation adds a new object to the database. The proxy argument supplies the identity of the well-known object. If an addObject
object with the same identity has already been registered, the operation raises . Since this operation does not ObjectExistsException
accept an argument supplying the object's type, the registry invokes on the given proxy to determine its most-derived type. The ice_id
implication here is that the object must be available in order for the registry to obtain its type. If the object is not available, raises addObject

.DeploymentException

updateObject
The operation supplies a new proxy for the well-known object whose identity is encapsulated by the proxy. If no object with updateObject
the given identity is registered, the operation raises . The object's type is not modified by this operation.ObjectNotRegisteredException

addObjectWithType
The operation behaves like , except the object's type is specified explicitly and therefore the registry addObjectWithType addObject
does not attempt to invoke on the given proxy (even if the type is an empty string).ice_id

https://doc.zeroc.com/display/Ice34/Object+Descriptor+Element

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

removeObject
The operation removes the well-known object with the given identity from the database. If no object with the given identity is removeObject
registered, the operation raises .ObjectNotRegisteredException

The following C++ example produces the same result as the we deployed earlier:descriptor

C++

Ice::ObjectAdapterPtr adapter = communicator->createObjectAdapter("EncoderAdapter");
Ice::Identity ident = communicator->stringToIdentity("EncoderFactory");
FactoryPtr f= new FactoryI;
Ice::ObjectPrx factory = adapter->add(f, ident);
IceGrid::AdminPrx admin = // ...
try {
 admin->addObject(factory); // OOPS!
} catch (const IceGrid::ObjectExistsException &) {
 admin->updateObject(factory);
}

After obtaining a proxy for the , the code invokes . Notice that the code traps interfaceIceGrid::Admin addObject ObjectExistsException
and calls instead when the object is already registered.updateObject

There is one subtle problem in this code: calling causes the registry to invoke on our factory object, but we have not yet addObject ice_id
activated the object adapter. As a result, our program will hang indefinitely at the call to . One solution is to activate the adapter prior to addObject
the invocation of ; another solution is to use as shown below:addObject addObjectWithType

C++

Ice::ObjectAdapterPtr adapter = communicator->createObjectAdapter("EncoderAdapter");
Ice::Identity ident = communicator->stringToIdentity("EncoderFactory");
FactoryPtr f = new FactoryI;
Ice::ObjectPrx factory = adapter->add(f, ident);
IceGrid::AdminPrx admin = // ...
try {
 admin->addObjectWithType(factory, factory->ice_id());
} catch (const IceGrid::ObjectExistsException &) {
 admin->updateObject(factory);
}

Adding Well-Known Objects with icegridadmin
The provides commands that are the functional equivalents of the Slice operations for . We can utilityicegridadmin managing well-known objects
use the utility to manually register the object from our :EncoderFactory descriptors

$ icegridadmin --Ice.Config=/opt/ripper/config
>>> object add "EncoderFactory@EncoderAdapter"

Use the command to verify that the object was registered successfully:object list

>>> object list
EncoderFactory
IceGrid/Query
IceGrid/Locator
IceGrid/Registry
IceGrid/InternalRegistry-Master

To specify the object's type explicitly, append it to the command:object add

https://doc.zeroc.com/display/Ice34/IceGrid+Administrative+Sessions
https://doc.zeroc.com/display/Ice34/IceGrid+Administrative+Utilities#IceGridAdministrativeUtilities-IceGridCommandLineUtility

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

>>> object add "EncoderFactory@EncoderAdapter" "::Ripper::MP3EncoderFactory"

Finally, the object is removed from the registry like this:

>>> object remove "EncoderFactory"

Querying Well-Known Objects
The registry's database of well-known objects is not used solely for resolving indirect proxies. The database can also be queried interactively to find
objects in a variety of ways. The interface supplies this functionality:IceGrid::Query

Slice

module IceGrid {
enum LoadSample {
 LoadSample1,
 LoadSample5,
 LoadSample15
};

interface Query {
 idempotent Object* findObjectById(Ice::Identity id);
 idempotent Object* findObjectByType(string type);
 idempotent Object* findObjectByTypeOnLeastLoadedNode(string type, LoadSample sample);
 idempotent Ice::ObjectProxySeq findAllObjectsByType(string type);
 idempotent Ice::ObjectProxySeq findAllReplicas(Object* proxy);
};
};

findObjectById
The operation returns the proxy associated with the given identity of a well-known object. It returns a null proxy if no findObjectById
match was found.

findObjectByType
The operation returns a proxy for an object registered with the given type. If more than one object has the same type, findObjectByType
the registry selects one at random. The operation returns a null proxy if no match was found.

findObjectByTypeOnLeastLoadedNode
The operation considers the system load when selecting one of the objects with the given type. findObjectByTypeOnLeastLoadedNode
If the registry is unable to determine which node hosts an object (for example, because the object was registered with a direct proxy and not
an adapter ID), the object is considered to have a load value of for the purposes of this operation. The sample argument determines the 1
interval over which the loads are averaged (one, five, or fifteen minutes). The operation returns a null proxy if no match was found.

findAllObjectsByType
The operation returns a sequence of proxies representing the well-known objects having the given type. The findAllObjectsByType
operation returns an empty sequence if no match was found.

findAllReplicas
Given an indirect proxy for a replicated object, the operation returns a sequence of proxies representing the individual findAllReplicas
replicas. An application can use this operation when it is necessary to communicate directly with one or more replicas.

Be aware that the operations accepting a parameter are not equivalent to invoking on each object to determine whether it supports type ice_isA
the given type, a technique that would not scale well for a large number of registered objects. Rather, the operations simply compare the given type
to the object's or, if the object was registered without a type, to the object's most-derived Slice type as determined by the registry.registered type

Using Well-Known Objects in the Ripper Application
Well-known objects are another IceGrid feature we can incorporate into our ripper application.

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

Adding Well-Known Objects to the Ripper Deployment

First we'll modify the to add two well-known objects:descriptors

XML

<icegrid>
 <application name="Ripper">
 <node name="Node1">
 <server id="EncoderServer1" exe="/opt/ripper/bin/server" activation="on-demand">
 <adapter name="EncoderAdapter" endpoints="tcp">
 <object identity="EncoderFactory1" type="::Ripper::MP3EncoderFactory"/>
 </adapter>
 </server>
 </node>
 <node name="Node2">
 <server id="EncoderServer2" exe="/opt/ripper/bin/server" activation="on-demand">
 <adapter name="EncoderAdapter" endpoints="tcp">
 <object identity="EncoderFactory2" type="::Ripper::MP3EncoderFactory"/>
 </adapter>
 </server>
 </node>
 </application>
</icegrid>

At first glance, the addition of the well-known objects does not appear to simplify our client very much. Rather than selecting which of the two
adapters receives the next task, we now need to select one of the well-known objects.

Querying Ripper Objects with findAllObjectsByType

The interface provides a way to eliminate the client's dependency on object adapter identifiers and object identities. Since our IceGrid::Query
factories are registered with the same type, we can search for all objects of that type:

C++

Ice::ObjectPrx proxy = communicator->stringToProxy("IceGrid/Query");
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy);
Ice::ObjectProxySeq seq;
string type = Ripper::MP3EncoderFactory::ice_staticId();
seq = query->findAllObjectsByType(type);
if (seq.empty()) {
 // no match
}
Ice::ObjectProxySeq::size_type index = ... // random number
Ripper::MP3EncoderFactoryPrx factory = Ripper::MP3EncoderFactoryPrx::checkedCast(seq[index]);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

This example invokes and then randomly selects an element of the sequence.findAllObjectsByType

Querying Ripper Objects with findObjectByType

We can simplify the client further using instead, which performs the randomization for us:findObjectByType

https://doc.zeroc.com/display/Ice34/Using+IceGrid+Deployment#UsingIceGridDeployment-AddingNodestotheRipperApplication

Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

C++

Ice::ObjectPrx proxy = communicator->stringToProxy("IceGrid/Query");
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy);
Ice::ObjectPrx obj;
string type = Ripper::MP3EncoderFactory::ice_staticId();
obj = query->findObjectByType(type);
if (!obj) {
 // no match
}
Ripper::MP3EncoderFactoryPrx factory = Ripper::MP3EncoderFactoryPrx::checkedCast(obj);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Querying Ripper Objects with findObjectByTypeOnLeastLoadedNode

So far the use of has allowed us to simplify our client, but we have not gained any functionality. If we replace the call to IceGrid::Query findObje
 with , we can improve the client by distributing the encoding tasks more intelligently. The ctByType findObjectByTypeOnLeastLoadedNode

change to the client's code is trivial:

C++

Ice::ObjectPrx proxy = communicator->stringToProxy("IceGrid/Query");
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy);
Ice::ObjectPrx obj;
string type = Ripper::MP3EncoderFactory::ice_staticId();
obj = query->findObjectByTypeOnLeastLoadedNode(type,
 IceGrid::LoadSample1);
if (!obj) {
 // no match
}
Ripper::MP3EncoderFactoryPrx factory = Ripper::MP3EncoderFactoryPrx::checkedCast(obj);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Ripper Progress Review

Incorporating intelligent load distribution is a worthwhile enhancement and is a capability that would be time consuming to implement ourselves.
However, our current design uses only well-known objects in order to make queries possible. We do not really need the encoder factory object on
each compute server to be individually addressable as a well-known object, a fact that seems clear when we examine the identities we assigned to
them: , , and so on. IceGrid's give us the tools we need to improve our design.EncoderFactory1 EncoderFactory2 replication features

See Also

Terminology
Type IDs
Object Descriptor Element
IceGrid Administrative Sessions
IceGrid Administrative Utilities
Object Adapter Replication

https://doc.zeroc.com/display/Ice34/Object+Adapter+Replication
https://doc.zeroc.com/display/Ice34/Terminology
https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Object+Descriptor+Element
https://doc.zeroc.com/display/Ice34/IceGrid+Administrative+Sessions
https://doc.zeroc.com/display/Ice34/IceGrid+Administrative+Utilities
https://doc.zeroc.com/display/Ice34/Object+Adapter+Replication

	Well-Known Objects

