
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Code Generation in Ruby
The Ruby mapping supports two forms of code generation: dynamic and static.

On this page:

Dynamic Code Generation in Ruby
Ice::loadSlice Options in Ruby
Locating Slice Files in Ruby
Loading Multiple Slice Files in Ruby
Limitations of Dynamic Code Generation in Ruby

Static Code Generation in Ruby
Compiler Output in Ruby
Include Files in Ruby

Static Versus Dynamic Code Generation in Ruby
Application Considerations for Code Generation in Ruby
Mixing Static and Dynamic Generation in Ruby

slice2rb Command-Line Options

Dynamic Code Generation in Ruby
Using dynamic code generation, Slice files are "loaded" at run time and dynamically translated into Ruby code, which is immediately compiled and
available for use by the application. This is accomplished using the method, as shown in the following example:Ice::loadSlice

Ruby

Ice::loadSlice("Color.ice")
puts "My favorite color is #{M::Color.blue.to_s}"

For this example, we assume that contains the following definitions:Color.ice

Slice

module M {
 enum Color { red, green, blue };
};

Ice::loadSlice Options in Ruby

The method behaves like a Slice compiler in that it accepts command-line arguments for specifying preprocessor options and Ice::loadSlice
controlling code generation. The arguments must include at least one Slice file.

The function has the following Ruby definition:

Ruby

def loadSlice(cmd, args=[])

The command-line arguments can be specified entirely in the first argument, , which must be a string. The optional second argument can be used cmd
to pass additional command-line arguments as a list; this is useful when the caller already has the arguments in list form. The function always returns

.nil

For example, the following calls to are functionally equivalent:Ice::loadSlice

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Ruby

Ice::loadSlice("-I/opt/IceRuby/slice Color.ice")
Ice::loadSlice("-I/opt/IceRuby/slice", ["Color.ice"])
Ice::loadSlice("", ["-I/opt/IceRuby/slice", "Color.ice"])

In addition to the , also supports the following command-line options:standard compiler options Ice::loadSlice

--all
Generate code for all Slice definitions, including those from included files.

--checksum
Generate for Slice definitions.checksums

Locating Slice Files in Ruby

If your Slice files depend on Ice types, you can avoid hard-coding the path name of your Ice installation directory by calling the Ice::getSliceDir
function:

Ruby

Ice::loadSlice("-I" + Ice::getSliceDir() + " Color.ice")

This function attempts to locate the subdirectory of your Ice installation using an algorithm that succeeds for the following scenarios:slice

Installation of a binary Ice archive
Installation of an Ice source distribution using make install
Installation via a Windows installer
RPM installation on Linux
Execution inside a compiled Ice source distribution

If the subdirectory can be found, returns its absolute path name, otherwise the function returns .slice getSliceDir nil

Loading Multiple Slice Files in Ruby

You can specify as many Slice files as necessary in a single invocation of , as shown below:Ice::loadSlice

Ruby

Ice::loadSlice("Syscall.ice Process.ice")

Alternatively, you can call several times:Ice::loadSlice

Ruby

Ice::loadSlice("Syscall.ice")
Ice::loadSlice("Process.ice")

If a Slice file includes another file, the default behavior of generates Ruby code only for the named file. For example, suppose Ice::loadSlice Sys
 includes as follows:call.ice Process.ice

Slice

// Syscall.ice
#include <Process.ice>
...

https://doc.zeroc.com/display/Ice34/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice34/Using+Slice+Checksums+in+Ruby

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

If you call , Ruby code is not generated for the Slice definitions in or for any definitions Ice::loadSlice("-I. Syscall.ice") Process.ice
that may be included by . If you also need code to be generated for included files, one solution is to load them individually in Process.ice
subsequent calls to . However, it is much simpler, not to mention more efficient, to use the option instead:Ice::loadSlice --all

Ruby

Ice::loadSlice("--all -I. Syscall.ice")

When you specify , generates Ruby code for all Slice definitions included directly or indirectly from the named Slice files.--all Ice::loadSlice

There is no harm in loading a Slice file multiple times, aside from the additional overhead associated with code generation. For example, this situation
could arise when you need to load multiple top-level Slice files that happen to include a common subset of nested files. Suppose that we need to load
both and , both of which include . The simplest way to load both files is with a single call to Syscall.ice Kernel.ice Process.ice Ice::

:loadSlice

Ruby

Ice::loadSlice("--all -I. Syscall.ice Kernel.ice")

Although this invocation causes the Ice extension to generate code twice for , the generated code is structured so that the interpreter Process.ice
ignores duplicate definitions. We could have avoided generating unnecessary code with the following sequence of steps:

Ruby

Ice::loadSlice("--all -I. Syscall.ice")
Ice::loadSlice("-I. Kernel.ice")

In more complex cases, however, it can be difficult or impossible to completely avoid this situation, and the overhead of code generation is usually
not significant enough to justify such an effort.

Limitations of Dynamic Code Generation in Ruby

The method must be called outside of any module scope. For example, the following code is incorrect:Ice::loadSlice

Ruby

WRONG
module M
 Ice::loadSlice("--all -I. Syscall.ice Kernel.ice")
 ...
end

Static Code Generation in Ruby
You should be familiar with static code generation if you have used other Slice language mappings, such as C++ or Java. Using static code
generation, the Slice compiler generates Ruby code from your Slice definitions.slice2rb

Compiler Output in Ruby

For each Slice file , generates Ruby code into a file named in the output directory. The default output directory is the current X.ice slice2rb X.rb
working directory, but a different directory can be specified using the option.--output-dir

Include Files in Ruby

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

1.
2.

3.

It is important to understand how handles include files. In the absence of the option, the compiler does not generate Ruby code for slice2rb --all
Slice definitions in included files. Rather, the compiler translates Slice statements into Ruby statements in the following manner:#include require

Determine the full pathname of the included file.
Create the shortest possible relative pathname for the included file by iterating over each of the include directories (specified using the -I
option) and removing the leading directory from the included file if possible.
For example, if the full pathname of an included file is , and we specified the options /opt/App/slice/OS/Process.ice -I/opt/App
and , then the shortest relative pathname is after removing .-I/opt/App/slice OS/Process.ice /opt/App/slice
Replace the extension with . Continuing our example from the previous step, the translated statement becomes.ice .rb require

require "OS/Process.rb"

As a result, you can use options to tailor the statements generated by the compiler in order to avoid absolute pathnames and match the -I require
organizational structure of your application's source files.

Static Versus Dynamic Code Generation in Ruby
There are several issues to consider when evaluating your requirements for code generation.

Application Considerations for Code Generation in Ruby

The requirements of your application generally dictate whether you should use dynamic or static code generation. Dynamic code generation is
convenient for a number of reasons:

It avoids the intermediate compilation step required by static code generation.
It makes the application more compact because the application requires only the Slice files, not the additional files produced by static code
generation.
It reduces complexity, which is especially helpful during testing, or when writing short or transient programs.

Static code generation, on the other hand, is appropriate in many situations:

when an application uses a large number of Slice definitions and the startup delay must be minimized
when it is not feasible to deploy Slice files with the application
when a number of applications share the same Slice files
when Ruby code is required in order to utilize third-party Ruby tools.

Mixing Static and Dynamic Generation in Ruby

You can safely use a combination of static and dynamic translation in an application. For it to work properly, you must correctly manage the include
paths for Slice translation and the Ruby interpreter so that the statically-generated code can be imported properly by .require

For example, suppose you want to dynamically load the following Slice definitions:

Slice

#include <Glacier2/Session.ice>

module MyApp {
 interface MySession extends Glacier2::Session {
 // ...
 };
};

Whether the included file is loaded dynamically or statically is determined by the presence of the option:Glacier2/Session.ice --all

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

Ruby

sliceDir = "-I#{ENV['ICE_HOME']}/slice"

Load Glacier2/Session.ice dynamically:
Ice::loadSlice(sliceDir + " --all MySession.ice")

Load Glacier2/Session.ice statically:
Ice::loadSlice(sliceDir + " MySession.ice")

In this example, the first invocation of uses the option so that code is generated dynamically for all included files. The second loadSlice --all
invocation omits , therefore the Ruby interpreter executes the equivalent of the following statement:--all

require "Glacier2/Session.rb"

As a result, before we can call we must first ensure that the interpreter can locate the statically-generated file . loadSlice Glacier2/Session.rb
We can do this in a number of ways, including:

adding the parent directory (e.g.,) to the environment variable/opt/IceRuby/ruby RUBYLIB
specifying the option when starting the interpreter-I
modifying the search path at run time, as shown below:

$:.unshift("/opt/IceRuby/ruby")

slice2rb Command-Line Options
The Slice-to-Ruby compiler, , offers the following command-line options in addition to the :slice2rb standard options

--all
Generate code for all Slice definitions, including those from included files.

--checksum
Generate for Slice definitions.checksums

See Also

Using the Slice Compilers
Using Slice Checksums in Ruby

https://doc.zeroc.com/display/Ice34/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice34/Using+Slice+Checksums+in+Ruby
https://doc.zeroc.com/display/Ice34/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice34/Using+Slice+Checksums+in+Ruby

	Code Generation in Ruby

