
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Ruby Mapping for Operations
On this page:

Basic Ruby Mapping for Operations
Normal and idempotent Operations in Ruby
Passing Parameters in Ruby

In-Parameters in Ruby
Out-Parameters in Ruby
Parameter Type Mismatches in Ruby
Null Parameters in Ruby

Exception Handling in Ruby

Basic Ruby Mapping for Operations
As we saw in the , for each on an interface, the proxy class contains a corresponding method with the same Ruby mapping for interfaces operation
name. To invoke an operation, you call it via the proxy. For example, here is part of the definitions for our :file system

Slice

module Filesystem {
 interface Node {
 idempotent string name();
 };
 // ...
};

The operation returns a value of type . Given a proxy to an object of type , the client can invoke the operation as follows:name string Node

Ruby

node = ... # Initialize proxy
name = node.name() # Get name via RPC

Normal and Operations in Rubyidempotent
You can add an qualifier to a Slice operation. As far as the signature for the corresponding proxy method is concerned, idempotent has idempotent
no effect. For example, consider the following interface:

Slice

interface Example {
 string op1();
 idempotent string op2();
};

The proxy class for this is:

Ruby

class ExamplePrx < Ice::ObjectPrx
 def op1(_ctx=nil)

 def op2(_ctx=nil)
end

https://doc.zeroc.com/display/Ice34/Ruby+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice34/Operations
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System#SliceforaSimpleFileSystem-CompleteDefinition

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Because affects an aspect of call dispatch, not interface, it makes sense for the two methods to look the same.idempotent

Passing Parameters in Ruby

In-Parameters in Ruby

All parameters are passed by reference in the Ruby mapping; it is guaranteed that the value of a parameter will not be changed by the invocation.

Here is an interface with operations that pass parameters of various types from client to server:

Slice

struct NumberAndString {
 int x;
 string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
 void op1(int i, float f, bool b, string s);
 void op2(NumberAndString ns, StringSeq ss, StringTable st);
 void op3(ClientToServer* proxy);
};

The Slice compiler generates the following proxy for this definition:

Ruby

class ClientToServerPrx < Ice::ObjectPrx
 def op1(i, f, b, s, _ctx=nil)

 def op2(ns, ss, st, _ctx=nil)

 def op3(proxy, _ctx=nil)
end

Given a proxy to a interface, the client code can pass parameters as in the following example:ClientToServer

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Ruby

p = ... # Get proxy...

p.op1(42, 3.14, true, "Hello world!") # Pass simple literals

i = 42
f = 3.14
b = true
s = "Hello world!"
p.op1(i, f, b, s) # Pass simple variables

ns = NumberAndString.new()
ns.x = 42
ns.str = "The Answer"
ss = ["Hello world!"]
st = {}
st[0] = ns
p.op2(ns, ss, st) # Pass complex variables

p.op3(p) # Pass proxy

Out-Parameters in Ruby

As in Java, Ruby functions do not support reference arguments. That is, it is not possible to pass an uninitialized variable to a Ruby function in order
to have its value initialized by the function. The overcomes this limitation with the use of that represent each Java mapping holder classes out
parameter. The Ruby mapping takes a different approach, one that is more natural for Ruby users.

The semantics of parameters in the Ruby mapping depend on whether the operation returns one value or multiple values. An operation returns out
multiple values when it has declared multiple parameters, or when it has declared a non- return type and at least one parameter.out void out

If an operation returns multiple values, the client receives them in the form of a . A non- return value, if any, is always the first result array void
element in the result array, followed by the parameters in the order of declaration.out

If an operation returns only one value, the client receives the value itself.

Here again are the same Slice definitions we saw earlier, but this time with all parameters being passed in the direction:out

Slice

struct NumberAndString {
 int x;
 string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
 int op1(out float f, out bool b, out string s);
 void op2(out NumberAndString ns,
 out StringSeq ss,
 out StringTable st);
 void op3(out ServerToClient* proxy);
};

The Ruby mapping generates the following code for this definition:

https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Operations#JavaMappingforOperations-out

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

Ruby

class ClientToServerPrx < Ice::ObjectPrx
 def op1(_ctx=nil)

 def op2(_ctx=nil)

 def op3(_ctx=nil)
end

Given a proxy to a interface, the client code can receive the results as in the following example:ServerToClient

Ruby

p = ... # Get proxy...
i, f, b, s = p.op1()
ns, ss, st = p.op2()
stcp = p.op3()

The operations have no parameters, therefore no arguments are passed to the proxy methods. Since and return multiple values, their in op1 op2
result arrays are unpacked into separate values, whereas the return value of requires no unpacking.op3

Parameter Type Mismatches in Ruby

Although the Ruby compiler cannot check the types of arguments passed to a method, the Ice run time does perform validation on the arguments to
a proxy invocation and reports any type mismatches as a exception.TypeError

Null Parameters in Ruby

Some Slice types naturally have "empty" or "not there" semantics. Specifically, sequences, dictionaries, and strings all can be , but the nil
corresponding Slice types do not have the concept of a null value. To make life with these types easier, whenever you pass as a parameter or nil
return value of type sequence, dictionary, or string, the Ice run time automatically sends an empty sequence, dictionary, or string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested data types, members that are sequences, dictionaries, or strings
automatically arrive as an empty value at the receiving end. This saves you having to explicitly initialize, for example, every string element in a large
sequence before sending the sequence in order to avoid a run-time error. Note that using null parameters in this way does create null semantics not
for Slice sequences, dictionaries, or strings. As far as the object model is concerned, these do not exist (only sequences, dictionaries, and empty
strings do). For example, it makes no difference to the receiver whether you send a string as or as an empty string: either way, the receiver sees nil
an empty string.

Exception Handling in Ruby
Any operation invocation may throw a and, if the operation has an exception specification, may also throw . run-time exception user exceptions
Suppose we have the following simple interface:

Slice

exception Tantrum {
 string reason;
};

interface Child {
 void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as Ruby exceptions, so you can simply enclose one or more operation invocations in a block:begin-rescue

https://doc.zeroc.com/display/Ice34/Ruby+Mapping+for+Exceptions#RubyMappingforExceptions-runtime
https://doc.zeroc.com/display/Ice34/Ruby+Mapping+for+Exceptions#RubyMappingforExceptions-user

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

Ruby

child = ... # Get child proxy...

begin
 child.askToCleanUp()
rescue Tantrum => t
 puts "The child says: #{t.reason}"
end

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected run-time
errors, will usually be handled by exception handlers higher in the hierarchy. For example:

Ruby

def run()
 child = ... # Get child proxy...
 begin
 child.askToCleanUp()
 rescue Tantrum => t
 puts "The child says: #{t.reason}"
 child.scold() # Recover from error...
 end
 child.praise() # Give positive feedback...
end

begin
 # ...
 run()
 # ...
rescue Ice::Exception => ex
 print ex.backtrace.join("\n")
end

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the strategy we
used for our first simple application in .)Hello World Application

See Also

Operations
Hello World Application
Slice for a Simple File System
Ruby Mapping for Operations
Ruby Mapping for Interfaces
Ruby Mapping for Exceptions

https://doc.zeroc.com/display/Ice34/Hello+World+Application
https://doc.zeroc.com/display/Ice34/Operations
https://doc.zeroc.com/display/Ice34/Hello+World+Application
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice34/Ruby+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice34/Ruby+Mapping+for+Exceptions

	Ruby Mapping for Operations

