Ice 3.4.2 Documentation

Objective-C Mapping for Sequences

The Objective-C mapping uses different mappings for sequences of value types (such as sequence<byt e>) and non-value types (such as sequenc
e<string>).

On this page:

® Mapping for Sequences of Value Types in Objective-C
® Mapping of Sequences of Non-Value Types in Objective-C

Mapping for Sequences of Value Types in Objective-C

The following Slice types are value types:
® Integral types (bool , byt e, short,int, | ong)
® Floating point types (f | oat , doubl e)
® Enumerated types

Sequences of these types map to a type definition. For example:

Slice

enum Fruit { Apple, Pear, Orange };

sequence<byt e> Byt eSeq;
sequence<i nt > | nt Seq;
sequence<Frui t> Fruit Seq;

The three Slice sequences produce the following Objective-C definitions:

Objective-C

typedef enum {
EXAppl e, EXPear, EXOrange
} EXFruit;

typedef NSData EXByteSeq;
t ypedef NSMut abl eDat a EXMut abl eByt eSeq;

typedef NSData EXI nt Seq;
typedef NSMut abl eDat a EXMut abl el nt Seq;

typedef NSData EXFruit Seq;
t ypedef NSMut abl eDat a EXMut abl eFr ui t Seq;

As you can see, each sequence definition creates a pair of type definitions, an immutable version named <nodul e- pref i x><Sl i ce- nane>, and a
mutable version named <nodul e- pr ef i x>Mut abl e<Sl i ce- nane>. This constitutes the entire public API for sequences of value types, that is,
sequences of value types simply map to NSDat a or NSMut abl eDat a. The NS(Mut abl e) Dat a sequences contain an array of the corresponding
element type in their internal byte array.

@ We chose to map sequences of value types to NSDat a instead of NSAr r ay because of the large overhead of placing each sequence
element into an NSNunber container instance.

For example, here is how you could initialize a byte sequence of 1024 elements with values that are the modulo 128 of the element index in reverse
order:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Sequences

Ice 3.4.2 Documentation

Objective-C

int limt = 1024;
EXMut abl eByt eSeq *bs = [NSMut abl eDat a dataWthLength:limit];
ICEByte *p = (I CEByte *)[bs bytes];
while (--limt > 0) {
*p++ = limt % 0x80;
}

Naturally, you do not need to initialize the sequence using a loop. For example, if the data is available in a buffer, you could use the dat aW t hByt es
;1 engt h or dat aW t hByt esNoCopy: | engt h methods of NSDat a instead.

Here is one way to retrieve the bytes of the sequence:

Objective-C

const | CEByte* p = (const |CEByte *)[bs bytes];
const | CEByte* limtp = p + [bs length];
while (p < limtp) {

printf("%\n", *p++);
}

For sequences of types other than byt e or bool , you must keep in mind that the length of the NSDat a array is not the same as the number of
elements. The following example initializes an integer sequence with the first few primes and prints out the contents of the sequence:

Objective-C

const int primes[] ={ 1, 2, 3, 5 7, 9, 11, 13, 17, 19, 23 };
EXMut abl el nt Seq *is = [NSMut abl eDat a dat aWt hByt es: pri mes | engt h: si zeof (prinmes)];

const ICEInt *p = (const ICEInt *)[is bytes];
int limt =1[is length]l / sizeof(*p);
int i;
for(i =0; i <limt; ++i) {
printf("%l\n", p[i]);
}

The code to manipulate a sequence of enumerators is very similar. For portability, you should not assume a particular size for enumerators. That is,
instead of relying on all enumerators having the size of, for example, an i nt, it is better to use si zeof (EXFr ui t) to ensure that you are not
overstepping the bounds of the sequence.

Mapping of Sequences of Non-Value Types in Objective-C

Sequences of non-value types, such as sequences of st r i ng, structures, classes, and so on, map to mutable and immutable type definitions of NSAr
ray. For example:

Slice
sequence<string> Page;

sequence<Page> Book;

This maps to:

Copyright © 2017, ZeroC, Inc.

Objective-C

t ypedef
t ypedef

t ypedef
t ypedef

Ice 3.4.2 Documentation

NSArray EXPage;
NSMut abl eArray EXMut abl ePage;

NSArray EXBook;
NSMut abl eArray EXMut abl eBook;

You use such sequences as you would use any other NSAr r ay in your code. For example:

Objective-C

EXMut abl ePage *pagel = [NSArray arrayWthQoj ects:

@First line of page one",
@ Second |ine of page one",
nill;

EXMut abl ePage *page2 = [NSArray arrayWthQoj ects:

@First line of page two",
@ Second |ine of page two",
nill;

EXMut abl eBook *book = [NSMut abl eArray array];

[book addOnj ect: pagel];

[book addObj ect: page2] ;

[book addObject:[NSArray array]]; // Enpty page

This creates a book with three pages; the first two pages contain two lines each, and the third page is empty. You can print the contents of the book

as follows:

Objective-C

int pageNum = 0;

for (EXPage *page in book) {
++pageNum

l'ineNum = 0;

if ([page count] == 0) {

printf("page %: <enpty>\n", pageNun);

int

} else {
for (NSString *line in page) {
++l i neNum
printf("page %, line %: %\n", pageNum |ineNum [line UTF8String]);
}
}
}
This prints:
page 1, line 1: First line of page one
page 1, line 2: Second |ine of page one
page 2, line 1: First line of page two
page 2, line 2: Second |line of page two
page 3: <enpty>

If you have a sequence of proxies or a sequence of classes, to transmit a null proxy or class inside a sequence, you must insert an NSNul | value
into the NSAr r ay. In addition, the mapping also allows you to use NSNul | as the element value of an NSAr r ay for elements of type string, structure,
sequence, or dictionary. For example, instead of inserting an empty NSAr r ay into the book sequence in the preceding example, we could also have
inserted NSNul | :

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

Objective-C

EXMut abl eBook *book = [NSMut abl eArray array];
[book addObj ect: pagel];
[book addObj ect: page2?] ;
[book addbject:[NSNull null]]; // Enpty page

See Also

Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Modules
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Identifiers
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Structures
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Constants
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Exceptions
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Interfaces

	Objective-C Mapping for Sequences

