
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Objective-C Mapping for Interfaces
The mapping of Slice revolves around the idea that, to invoke a remote operation, you call a member function on a local class instance that interfaces
represents the remote object. This makes the mapping easy and intuitive to use because, for all intents and purposes (apart from error semantics),
making a remote procedure call is no different from making a local procedure call.

On this page:

Proxy Classes and Proxy Protocols in Objective-C
Proxy Instantiation and Casting in Objective-C

Using a Checked Cast in Objective-C
Using an Unchecked Cast in Objective-C

Using Proxy Methods in Objective-C
Object Identity and Proxy Comparison in Objective-C

Proxy Classes and Proxy Protocols in Objective-C
On the client side, interfaces map to a protocol with member functions that correspond to the operations on those interfaces. Consider the following
simple interface:

Slice

["objc:prefix:EX"]
module Example {
 interface Simple {
 void op();
 }
};

The Slice compiler generates the following definitions for use by the client:

Objective-C

@interface EXSimplePrx : ICEObjectPrx
// Mapping-internal methods here...
@end

@protocol EXSimplePrx <ICEObjectPrx>
-(void) op;
-(void) op:(ICEContext *)context;
@end;

As you can see, the compiler generates a proxy protocol and a proxy class . In general, the generated name for both EXSimplePrx EXSimplePrx
protocol and class is .Prx<module-prefix><interface-name>

In the client's address space, an instance of is the local ambassador for a remote instance of the interface in a server and is EXSimplePrx Simple
known as a . All the details about the server-side object, such as its address, what protocol to use, and its object identity are proxy class instance
encapsulated in that instance.

Note that derives from , and that adopts the protocol. This reflects the fact that all EXSimplePrx ICEObjectPrx EXSimplePrx ICEObjectPrx
Slice interfaces implicitly derive from . For each operation in the interface, the proxy protocol has two methods whose name is derived Ice::Object
from the operation. For the preceding example, we find that the operation is mapped to two methods, and .op op op:

The second method has a trailing parameter of type . This parameter is for use by the Ice run time to store information about how to ICEContext
deliver a request; normally, you do not need to supply a value here and can pretend that the trailing parameter does not exist. (We examine the ICEC

 parameter in detail in . The parameter is also used by .)ontext Request Contexts IceStorm

Proxy Instantiation and Casting in Objective-C
Client-side application code never manipulates proxy class instances directly. In fact, you are not allowed to instantiate a proxy class directly. Instead,
proxy instances are always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly.

https://doc.zeroc.com/display/Ice34/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice34/Request+Contexts
https://doc.zeroc.com/display/Ice34/IceStorm

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Proxies are immutable: once the run time has instantiated a proxy, that proxy continues to denote the same remote object and cannot be changed.
This means that, if you want to keep a copy of a proxy, it is sufficient to call on the proxy. (You can also call on a proxy because retain copy ICEOb

 implements . However, calling has the same effect as calling .)jectPrx NSCopying copy retain

Proxies are always passed and returned as type . For example, for the preceding id< Prx><module-prefix><interface-name> Simple
interface, the proxy type is .id<EXSimplePrx>

The base class provides class methods that allow you to cast a proxy from one type to another, as described below.ICEObjectPrx

Using a Checked Cast in Objective-C

A tests whether the object denoted by a proxy implements the specified interface:checkedCast

Objective-C

+(id) checkedCast:(id<ICEObjectPrx>)proxy;

If so, the cast returns a proxy to the specified interface; otherwise, if the object denoted by the proxy does not implement the specified interface, the
cast returns . Checked casts are typically used to safely down-cast a proxy to a more derived interface. For example, assuming we have Slice nil
interfaces and , you can write the following:Base Derived

Objective-C

id<EXBasePrx> base = ...; // Initialize base proxy
id<EXDerivedPrx> derived = [EXDerivedPrx checkedCast:base];
if(derived != nil)
{
 // base implements run-time type Derived
 // use derived...
} else {
 // Base has some other, unrelated type
}

The expression [tests whether points at an object of type (or an object with a type that is EXDerivedPrx checkedCast:base] base Derived
derived from). If so, the cast succeeds and is set to point at the same object as . Otherwise, the cast fails and is Derived derived base derived
set to . (Proxies that "point nowhere" are represented by .)nil nil

A typically results in a remote message to the server.checkedCast

The message effectively asks the server "is the object denoted by this proxy of type ?" The reply from the server is communicated to the Derived
application code in form of a successful (non-) or unsuccessful () result. Sending a remote message is necessary because, as a rule, there is nil nil
no way for the client to find out what the actual run-time type of a proxy is without confirmation from the server. (For example, the server may replace
the implementation of the object for an existing proxy with a more derived one.) This means that you have to be prepared for a to fail. checkedCast
For example, if the server is not running, you will receive an ; if the server is running, but the object denoted ICEConnectionRefusedException
by the proxy no longer exists, you will receive an .ICEObjectNotExistException

Using an Unchecked Cast in Objective-C

In some cases, it is known that an object supports a more derived interface than the static type of its proxy. For such cases, you can use an
unchecked down-cast:

Objective-C

+(id) uncheckedCast:(id<ICEObjectPrx>)proxy;

Here is an example:

In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the optimization applies only in narrowly-
defined circumstances, so you cannot rely on a not sending a message.checkedCast

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Objective-C

id<EXBasePrx> base;
base = ...; // Initialize base to point at a Derived
id<EXDerivedPrx> derived = [EXDerivedPrx uncheckedCast:base];
// Use derived...

An provides a down-cast consulting the server as to the actual run-time type of the object. You should use an uncheckedCast without uncheckedC
 only if you are certain that the proxy indeed supports the more derived type: an , as the name implies, is not checked in any ast uncheckedCast

way; it does not contact the object in the server and, if the proxy does not support the specified interface, the cast does not return null. If you use the
proxy resulting from an incorrect to invoke an operation, the behavior is undefined. Most likely, you will receive an uncheckedCast ICEOperationN

, but, depending on the circumstances, the Ice run time may also report an exception indicating that unmarshaling has failed, or otExistException
even silently return garbage results.

Despite its dangers, is still useful because it avoids the cost of sending a message to the server. And, particularly during uncheckedCast initialization
, it is common to receive a proxy of type , but with a known run-time type. In such cases, an saves the id<ICEObjectPrx> uncheckedCast
overhead of sending a remote message.

Note that an is the same as an ordinary cast. The following is incorrect and has undefined behavior:uncheckedCast not

Objective-C

id<EXDerivedPrx> derived = (id<EXDerivedPrx>)base; // Wrong!

Both and call on the proxy they return so, if you want to prevent the proxy from being deallocated checkedCast uncheckedCast autorelease
once the enclosing autorelease pool is drained, you must call on the returned proxy.retain

Using Proxy Methods in Objective-C
The provides a variety of . Since proxies are immutable, each of these "factory methods" returns a ICEObjectPrx methods for customizing a proxy
copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured with a ten-second timeout as shown
below:

Objective-C

id<ICEObjectPrx> proxy = [communicator stringToProxy:...];
proxy = [proxy ice_timeout:10000];

A factory method returns a new (autoreleased) proxy object if the requested modification differs from the current proxy, otherwise it returns the
original proxy. The returned proxy is always of the same type as the source proxy, except for the factory methods and . ice_facet ice_identity
Calls to either of these methods may produce a proxy for an object of an unrelated type, therefore they return a base proxy that you must
subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in Objective-C
Proxy objects support comparison with . Note that uses of the information in a proxy for the comparison. This means that not isEqual isEqual all
only the object identity must match for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information,
must be the same as well. In other words, comparison with tests for proxy identity, not object identity. A common mistake is to write code isEqual
along the following lines:

https://doc.zeroc.com/display/Ice34/Object+Incarnation+in+Objective-C#ObjectIncarnationinObjectiveC-proxies
https://doc.zeroc.com/display/Ice34/Object+Incarnation+in+Objective-C#ObjectIncarnationinObjectiveC-proxies
https://doc.zeroc.com/display/Ice34/Proxy+Methods

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

Objective-C

id<ICEObjectPrx> p1 = ...; // Get a proxy...
id<ICEObjectPrx> p2 = ...; // Get another proxy...

if (![p1 isEqual:p2]) {
 // p1 and p2 denote different objects // WRONG!
} else {
 // p1 and p2 denote the same object // Correct
}

Even though and differ, they may denote the same Ice object. This can happen if, for example, and embed the same object identity, but p1 p2 p1 p2
use a different protocol to contact the target object. Similarly, the protocols might be the same, but could denote different endpoints (because a single
Ice object can be contacted via several different transport endpoints). In other words, if two proxies compare equal with , we know that the isEqual
two proxies denote the same object (because they are identical in all respects); however, if two proxies compare unequal with , we know isEqual
absolutely nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use additional methods provided by proxies:

Objective-C

@protocol ICEObjectPrx <NSObject, NSCopying>
// ...
-(NSComparisonResult) compareIdentity:(id<ICEObjectPrx>)p;
-(NSComparisonResult) compareIdentityAndFacet:(id<ICEObjectPrx>)p;
@end

The method compares the object identities embedded in two proxies while ignoring other information, such as facet and compareIdentity
transport information. To include the in the comparison, use instead.facet name compareIdentityAndFacet

compareIdentity and allow you to correctly compare proxies for object identity. The example below demonstrates compareIdentityAndFacet
how to use :compareIdentity

Objective-C

id<ICEObjectPrx> p1 = ...; // Get a proxy...
id<ICEObjectPrx> p2 = ...; // Get another proxy...

if ([p1 compareIdentity:p2] != NSOrderedSame) {
 // p1 and p2 denote different objects // Correct
} else {
 // p1 and p2 denote the same object // Correct
}

See Also

Interfaces, Operations, and Exceptions
Proxies
Objective-C Mapping for Operations
Operations on Object
Proxy Methods
Facets and Versioning
IceStorm

https://doc.zeroc.com/display/Ice34/Facets+and+Versioning
https://doc.zeroc.com/display/Ice34/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice34/Proxies
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Operations
https://doc.zeroc.com/display/Ice34/Operations+on+Object
https://doc.zeroc.com/display/Ice34/Proxy+Methods
https://doc.zeroc.com/display/Ice34/Facets+and+Versioning
https://doc.zeroc.com/display/Ice34/IceStorm

	Objective-C Mapping for Interfaces

