Ice 3.4.2 Documentation

Objective-C Mapping for Structures

On this page:

Basic Objective-C Mapping for Structures
Mapping for Data Members in Objective-C
Creating and Initializing Structures in Objective-C
Copying Structures in Objective-C

Deallocating Structures in Objective-C

Structure Comparison and Hashing in Objective-C

Basic Objective-C Mapping for Structures

A Slice structure maps to an Objective-C class.

For each Slice data member, the generated Objective-C class has a corresponding property. For example, here is our Enpl oyee structure once
more:

Slice

struct Enpl oyee {
| ong nunber;
string firstNang;
string | ast Nare;

}

The Slice-to-Objective-C compiler generates the following definition for this structure:

Objective-C

@nterface EXEnpl oyee : NSObj ect <NSCopyi ng>

{
@rivate
| CELong nunber;
NSString *firstName;
NSString *I ast Naneg;
}

@r operty(nonatom c, assign) |CELong nunber;
@roperty(nonatonmic, retain) NSString *firstNanme;
@roperty(nonatomic, retain) NSString *|astName;

-(id) init:(lICELong)nunber firstNanme: (NSString *)firstName
| ast Nanme: (NSString *)I ast Nane;
+(id) enployee: (1 CELong) nunber firstName: (NSString *)firstNanme
I ast Name: (NSString *)| ast Nane;
+(id) enployee;
/1 This class also overrides copyWthZone,
/'l hash, isequal, and deall oc.
@nd

Mapping for Data Members in Objective-C

For each data member in the Slice definition, the Objective-C class contains a corresponding private instance variable of the same name, as well as
a property definition that allows you to set and get the value of the corresponding instance variable. For example, given an instance of EXEnpl oyee,
you can write the following:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Structures
https://doc.zeroc.com/display/Ice34/Dictionaries

Ice 3.4.2 Documentation

Objective-C

| CELong nunber ;
EXenpl oyee *e = ...;
[e set Nunber:99];
nunber = [e nunber];

/1 O, nore concisely with dot notation:

e. nunber = 99;
nunber = e.nunber;

Properties that represent data members always use the nonat oni ¢ property attribute. This avoids the overhead of locking each data member during
access. The second property attribute is assi gn for integral and floating-point types and r et ai n for all other types (such as strings, structures, and
so on.)

Creating and Initializing Structures in Objective-C

Structures provide the typical (inherited) i ni t method:

Objective-C

EXEnpl oyee *e = [[EXEnpl oyee alloc] init];
/1
[e rel ease];

As usual, i ni t initializes the instance variables of the structure with zero-filled memory. You can also declare default values in your Slice definition,
in which case this i ni t method initializes each data member with
its declared value.

In addition, a structure provides a second i ni t method that accepts one parameter for each data member of the structure:
Objective-C
-(id) init:(lICELong)nunber firstNane: (NSString *)firstName

I ast Narme: (NSString *)| ast Nane;

Note that the first parameter is always unlabeled; the second and subsequent parameters have a label that is the same as the name of the
corresponding Slice data member. The additional i ni t method allows you to instantiate a structure and initialize its data members in a single
statement:

Objective-C
EXEnpl oyee *e = [[EXEnpl oyee alloc] init:99 firstNane: @Brad" |astName: @ Cox"];

/1
[e rel ease];

i ni t applies the memory management policy of the corresponding properties, that is, it calls r et ai n on the fi r st Narme and | ast Nane arguments.

Each structure also provides two convenience constructors that mirror the i ni t methods: a parameter-less convenience constructor and one that
has a parameter for each Slice data member:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Structures

Ice 3.4.2 Documentation

Objective-C

+(id) enpl oyee;
+(id) enployee: (1 CELong) nunber firstName: (NSString *)firstName
| ast Nane: (NSString *)I ast Nane;

The convenience constructors have the same name as the mapped Slice structure (without the module prefix). As usual, they allocate an instance,
perform the same initialization actions as the corresponding i ni t methods, and call aut or el ease on the return value:

Objective-C
EXEnpl oyee *e = [EXEnpl oyee enpl oyee: 99 firstNane: @Brad" | astNanme: @ Cox"] ;

/1 No need to call [e release] here.

Copying Structures in Objective-C

Structures implement the NSCopyi ng protocol. Structures are copied by assigning instance variables of value type and calling r et ai n on each
instance variable of non-value type. In other words, the copy is shallow:

Objective-C

EXEnpl oyee *e = [EXEnpl oyee enpl oyee: 99 firstNane: @Brad" | astNanme: @ Cox"];
EXEnpl oyee *e2 = [e copy];

NSAssert (e. nunber == e2. nunber);

NSAssert ([e.firstName == e2.firstNane]); // Same instance

/1

[e2 rel ease];

Note that, if you assign an NSMut abl eSt ri ng to a structure member and use the structure as a dictionary key, you must not modify the string inside
the structure without copying it because doing so will corrupt the dictionary.

Deallocating Structures in Objective-C

Each structure implements a deal | oc method that calls r el ease on each instance variable with a r et ai n property attribute. This means that
structures take care of the memory management of their contents: releasing a structure automatically releases all its instance variables.

Structure Comparison and Hashing in Objective-C

Structures implement i sEqual , so you can compare them for equality. Two structures are equal if all their instance variables are equal. For value
types, equality is determined by the == operator; for non-value types other than classes, equality is determined by the corresponding instance
variable's i sEqual method. Classes are compared by comparing their identity: two class members are equal if they both point at the same instance.

The hash method returns a hash value is that is computed from the hash value of all of the structure's instance variables.

See Also

Structures

Dictionaries

Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Classes
https://doc.zeroc.com/display/Ice34/Structures
https://doc.zeroc.com/display/Ice34/Dictionaries
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Modules
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Identifiers
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Constants
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Exceptions
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Interfaces

Ice 3.4.2 Documentation

® Objective-C Mapping for Classes

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Classes

	Objective-C Mapping for Structures

