
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Objective-C Mapping for Identifiers
Objective-C identifiers are derived from Slice identifiers. The exact Objective-C identifier that is generated depends on the context. For types that are
nested in modules (and hence have global visibility in Objective-C), the generated Objective-C identifiers are prefixed with their . Slice module prefix
identifiers that do not have global visibility (such as operation names and structure members) do not use the module prefix and are preserved without
change. For example, consider the following Slice definition:

Slice

["objc:prefix:EX"]
module Example {
 struct Point {
 double x;
 double y;
 };
};

This maps to the following Objective-C definition:

Objective-C

@interface EXPoint : NSObject <NSCopying>
{
 @private
 ICEDouble x;
 ICEDouble y;
}

@property(nonatomic, assign) ICEDouble x;
@property(nonatomic, assign) ICEDouble y;

// More definitions here...
@end

If a Slice identifier is the same as an Objective-C keyword, the corresponding Objective-C identifier has an underscore suffix. For example, Slice while
maps to Objective-C .while_

In some cases, the Objective-C mapping generates more than one identifier for a given Slice construct. For example, an interface generates Intf
the identifiers and . If a Slice identifier happens to be an Objective-C keyword, the underscore suffix applies only where EXIntf EXIntfPrx
necessary, so an interface generates and .while EXWhile EXWhilePrx

Note that Slice operation and member names can clash with the name of an inherited method, property, or instance variable. For example:

Slice

exception Failed {
 string reason; // Clashes with NSException
};

This is a legal Slice definition. However, the generated exception class derives from , which defines a method. To avoid NSException reason
hiding the method in the base class, the generated exception class maps the Slice member to the Objective-C property , just as it reason reason_
would for a keyword.

This escape mechanism applies to all generated classes that directly or indirectly derive from or .NSObject NSException

Internal Identifiers in Objective-C
Any methods that contain two or more adjacent underscores (such as and) are internal to the Objective-C mapping implementation read__ op____
and are not for use by application code.

https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Modules

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

See Also

Objective-C Mapping for Modules
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces

https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Modules
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Structures
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Constants
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Exceptions
https://doc.zeroc.com/display/Ice34/Objective-C+Mapping+for+Interfaces

	Objective-C Mapping for Identifiers

